【題目】設(shè)a、b、c是等腰△ABC的三條邊,關(guān)于x的方程x2+2x+2c—a=0有兩個相等的實(shí)數(shù)根,且ab為方程x2+mx—3m=0的兩根,求m的值.

【答案】m=-12.

【解析】

由方程x2+2x+2c-a=0有兩個相等的實(shí)數(shù)根,可得△=0,把對應(yīng)的值代入△=0中整理即可得到a+b=2c之間的關(guān)系式,從而得a=b=c,進(jìn)而可以判斷方程x2+mx-3m=0有兩個相等的實(shí)數(shù)根,通過△=0即可求得m的值.

∵方程x2+2x+2c-a=0 有兩個相等的實(shí)數(shù)根,
∴△=0,
即:4b-4×(2c-a)=0,
∴a+b-2c=0,
即a+b=2c,
∵a、b、c是等腰△ABC的三條邊,
∴a=b=c.
∵a、b為方程x2+mx-3m=0的兩根,
∴方程x2+mx-3m=0有兩個相等的實(shí)數(shù)根,
∴m2-4×(-3m)=0,解得m=-12或m=0(舍去).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O半徑為,AB是⊙O的一條弦,且AB=3,則弦AB所對的圓周角度數(shù)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠C=60°,點(diǎn)D是射線BC上的一個動點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為一邊的等邊三角形.

1)如圖,當(dāng)點(diǎn)D在線段BC上時,求證:△AEB≌△ADC

2)如圖,探究BEAC的位置關(guān)系,并說明理由.

3)如圖,當(dāng)點(diǎn)DBC的延長線上時,(2)中結(jié)論還成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店王阿姨到水果批發(fā)市場打算購進(jìn)一種水果銷售,經(jīng)過還價(jià),實(shí)際價(jià)格每千克20元。王阿姨準(zhǔn)備購進(jìn)這種水果銷售,若這種水果的銷售量y(千克)與銷售單價(jià)x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系.

1)求yx之間的函數(shù)關(guān)系式;

2)請你幫王阿姨拿個主意,將這種水果的銷售單價(jià)定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=銷售收入-進(jìn)貨金額)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是半圓O上的三等分點(diǎn),直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點(diǎn)F.

(1)求∠AFE的度數(shù);

(3)求陰影部分的面積(結(jié)果保留π和根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A80°,ACBC,以點(diǎn)B為旋轉(zhuǎn)中心把△ABC按順時針旋轉(zhuǎn)α度,得到△ABC,點(diǎn)A恰好落在AC上,連接CC,則∠ACC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一邊長為l的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OBl為邊作第三個正方形OBlB2C2,照此規(guī)律作下去,則點(diǎn)B2020的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,Ax軸上一點(diǎn),以OA為直徑的作半圓M,點(diǎn)BOA上一點(diǎn),以OB為邊作OBDC交半圓MC,D兩點(diǎn).

1)連接AD,求證:DADB;

2)若A點(diǎn)坐標(biāo)為(200),點(diǎn)B的坐標(biāo)是(16,0),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一農(nóng)戶要建一個矩形雞舍,雞舍的一邊利用長為a米的墻,另外三邊用25米長的籬笆圍成,為方便進(jìn)出,在垂直于墻的一邊CD上留一個1米寬的門,

1)若a12,問矩形的邊長分別為多少時,雞舍面積為802

2)問a的值在什么范圍時,(1)中的解有兩個?一個?無解?

3)若住房墻的長度足夠長,問雞舍面積能否達(dá)到90平方米?

查看答案和解析>>

同步練習(xí)冊答案