【題目】利用我們學(xué)過的知識,可以得出下面這個優(yōu)美的等式:

;該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.

.請你證明這個等式;

.如果,請你求出 的值.

【答案】1)證明見解析;(23.

【解析】

1)已知等式右邊利用完全平方公式化簡,整理即可作出驗證;

2)把a,bc的值代入已知等式右邊,求出值即為所求式子的值.

1)證明:右邊=[a-b2+b-c2+c-a2]= a2-2ab+b2+b2-2bc+c2+c2-2ac+a2

=2a2+2b2+2c2-2ab-2bc-2ac

=a2+b2+c2-ab-bc-ac

=左邊;

2)解:當(dāng)a=2018,b=2019,c=2020時,原式= [a-b2+b-c2+c-a2]

=×1+1+4

=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)閱讀內(nèi)容,在括號內(nèi)填寫推理依據(jù).

如果兩條平行線被三條直線所截,那么一對內(nèi)錯角的角平分線一定互相平行.

已知:ABCDEM平分∠AEF,FN平分∠EFD

求證: EMFN

證明:

ABCD

∠AEF=∠DFE

EM平分∠AEF

∴∠MEF= AEF

FN平分∠EFD

∠EFN=∠ EFD

∠MEF=∠ EFN

EM FN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊的邊 上一點,延長線上一點,接交,過點作點.證明下列結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD在平面直角坐標(biāo)系中,ADBCx軸,ABDCy軸,x軸與y軸夾角為90°,點M,N分別在xy軸上,點A1,8),B1,6),C76),D7,8).

1)連接線段OB、OD、BD,求OBD的面積;

2)若長方形ABCD在第一象限內(nèi)以每秒0.5個單位長度的速度向下平移,經(jīng)過多少秒時,OBD的面積與長方形ABCD的面積相等請直接寫出答案;

3)見備用圖,連接 OB,OD,ODBC于點E,∠BON的平分線和∠BEO的平分線交于點F

①當(dāng)∠BEO的度數(shù)為n,∠BON的度數(shù)為m時,求∠OFE的度數(shù).

②請直接寫出∠OFE和∠BOE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:把形如的二次三項式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即.例如:的一種形式的配方;所以,,,的三種不同形式的配方(即余項分別是常數(shù)項、一次項、二次項).

請根據(jù)閱讀材料解決下列問題:

1)比照上面的例子,寫出三種不同形式的配方;

2)已知,求的值;

3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點Bn到ON的距離是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC=6,ACB90°,ABC的平分線交AC于點D,EAB上一點,且BE=BC,CFEDBD于點F,連接EF,ED.

1)求證:四邊形CDEF是菱形.

2)當(dāng)∠ACB 度時,四邊形CDEF是正方形,請給予證明;并求此時正方形的邊長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有個填寫運算符號的游戲:在“ 1397” 中的每個□內(nèi),填入,,中的某一個(可重復(fù)使用),然后計算結(jié)果.

1)計算:

2)若13×97= -4,請推算□內(nèi)的符號;

3)在“139-7”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小正方形的邊長為1,在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A'B'C',圖中標(biāo)出了點B的對應(yīng)點B'.利用網(wǎng)格點和三角板畫圖:

1)補全A'B'C'根據(jù)下列條件;

2)畫出ABCAB邊上的中線CD;

3)畫出ABCBC邊上的高線AE

4)線段A'B'AB的關(guān)系是    A'B'C'的面積為    

查看答案和解析>>

同步練習(xí)冊答案