【題目】如圖,已知一次函數(shù)y=﹣x+b與反比例函數(shù)y=(k≠0)的圖象相交于點(diǎn)P,則關(guān)于x的方程﹣x+b=的解是_____

【答案】x1=1,x2=2

【解析】

一次函數(shù)與反比例函數(shù)交與點(diǎn)P,由圖已知點(diǎn)P(1,2),將P點(diǎn)在坐標(biāo)代入一次函數(shù)和反比例函數(shù)即可求出一次函數(shù)與反比例函數(shù)的解析式,然后聯(lián)立一次函數(shù)與反比例函數(shù),即可求出關(guān)于x的方程﹣x+b=的解.

解:由題意及圖像可知,P的坐標(biāo)為(1,2),

將P(1,2)帶入一次函數(shù)y=﹣x+b的解析式,得2= -1+b,解得b=3;

將P(1,2)帶入反比例函數(shù)y=的解析式,得,解得k= 2;

∵﹣x+b=.

,

整理有x2-3x+2=0,解得:x1=1,x2=2.

經(jīng)檢驗(yàn)x1=1,x2=2是方程的解,

故正確答案為:x1=1,x2=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是放在地面上的一個(gè)長(zhǎng)方體盒子,其中AB18cm,BC12cm,BF10cm,點(diǎn)M在棱AB上,且AM6cm,點(diǎn)NFG的中點(diǎn),一只螞蟻要沿著長(zhǎng)方體盒子的表面從點(diǎn)M爬行到點(diǎn)N,它需要爬行的最短路程為(  )

A.20cmB.2cmC.12+2cmD.18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.

(1)試判斷△ABC的形狀;

(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD,AB=AD=2,A=60°,BC=,CD=3

1)求∠ADC的度數(shù);

2)求四邊形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°DAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連結(jié)AEDE、DC

①求證:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+2x軸,y軸分別交于點(diǎn)A(﹣1,0)和點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)C(1,n).

(1)求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達(dá)式;

(2)過(guò)x軸上的點(diǎn)D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點(diǎn),且PQ=2QD,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點(diǎn)C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC的邊AB,AC的外側(cè)分別作等邊ABD和等邊△ACE,連接DC,BE

1)求證:DCBE;

2)若BD3,BC4, BD⊥BC于點(diǎn)B,請(qǐng)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),與軸交于點(diǎn)、,點(diǎn)坐標(biāo)為

求該拋物線的解析式;

拋物線的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);

點(diǎn)是線段上的動(dòng)點(diǎn),過(guò)點(diǎn),交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

若平行于軸的動(dòng)直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.問(wèn):是否存在這樣的直線,使得是等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案