【題目】我國古代數(shù)學(xué)家趙爽的勾股圓方圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么 的值為( ).

A. 49 B. 25 C. 13 D. 1

【答案】A

【解析】

本題主要考查了勾股定理. 根據(jù)正方形的面積公式以及勾股定理,結(jié)合圖形進(jìn)行分析發(fā)現(xiàn):大正方形的面積即直角三角形斜邊的平方25,也就是兩條直角邊的平方和是25,四個(gè)直角三角形的面積和是大正方形的面積減去小正方形的面積即2ab=24.根據(jù)完全平方公式即可求解.

解:根據(jù)題意,結(jié)合勾股定理a2+b2=25

四個(gè)三角形的面積=4×ab=25-1,

∴2ab=24

聯(lián)立解得:(a+b2=25+24=49

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ymxn與反比例函數(shù)交于AB兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與x軸、y軸分別交于點(diǎn)C、點(diǎn)DAEx軸于E,BFy軸于F

(1) 若mk,n=0,求A,B兩點(diǎn)的坐標(biāo)(用m表示).

(2) 如圖1,若A(x1y1)、B(x2,y2),寫出y1y2n的大小關(guān)系,并證明.

(3) 如圖2,M、N分別為反比例函數(shù)圖象上的點(diǎn),AMBNx軸.若,且AMBN之間的距離為5,則kb=_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知?jiǎng)狱c(diǎn)P在函數(shù)x0的圖象上運(yùn)動(dòng)PMx軸于點(diǎn)M,PNy軸于點(diǎn)N,線段PMPN分別與直線ABy=x+1交于點(diǎn)E,F,AFBE的值為(  )

A. 4 B. 2 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(2x2y)3(3x2y)

(2)(36x3-24x2+2x)÷4x

(3)(2x+y+1)(2x-y-1)

(4)(-3ax)2(5a2-3ax3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是斜邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.

(1)求證:BD=AF;

(2)判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全國數(shù)學(xué)競(jìng)賽,在最近的五次選拔測(cè)試中,他倆的成績(jī)分別如下表:

根據(jù)上表解答下列問題:

(1)完成下表:

姓名

極差(分)

平均成績(jī)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

40

80

75

75

190

小李

(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是誰?若將80分以上(含80分)的成績(jī)視為優(yōu)秀,則小王、小李在這五次測(cè)試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為應(yīng)選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形中,邊的中點(diǎn),邊的延長(zhǎng)線上一點(diǎn),于點(diǎn).下列結(jié)論錯(cuò)誤的是(

A.

B.

C.

D..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)舉行畢業(yè)典禮,需要從九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中選出2名主持人.

1)用樹形圖或列表法列出所有可能情形;

2)求2名主持人來自不同班級(jí)的概率;

3)求2名主持人恰好11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位為響應(yīng)政府發(fā)出的全民健身的號(hào)召,打算在長(zhǎng)和寬分別為20 m和11 m的矩形大廳內(nèi)修建一個(gè)60 m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側(cè)沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費(fèi)用為20元/m2,新建(含裝修)墻壁的費(fèi)用為80元/m2.設(shè)健身房的高為3 m一面舊墻壁AB的長(zhǎng)為x m,修建健身房墻壁的總投入為y元.

(1)求y與x的函數(shù)關(guān)系式;

(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當(dāng)投入的資金為4800元時(shí),問利用舊墻壁的總長(zhǎng)度為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案