【題目】如圖,已知∠1+∠2=180°,∠B=∠3,你能判斷∠C與∠AED的大小關(guān)系嗎?并說明理由.
【答案】解:∠C與∠AED相等,理由為: 證明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義),
∴∠2=∠DFE(同角的補(bǔ)角相等),
∴AB∥EF(內(nèi)錯(cuò)角相等兩直線平行),
∴∠3=∠ADE(兩直線平行內(nèi)錯(cuò)角相等),
又∠B=∠3(已知),
∴∠B=∠ADE(等量代換),
∴DE∥BC(同位角相等兩直線平行),
∴∠C=∠AED(兩直線平行同位角相等)
【解析】∠C與∠AED相等,理由為:由鄰補(bǔ)角定義得到∠1與∠DFE互補(bǔ),再由已知∠1與∠2互補(bǔ),根據(jù)同角的補(bǔ)角相等可得出∠2與∠DFE相等,根據(jù)內(nèi)錯(cuò)角相等兩直線平行,得到AB與EF平行,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等可得出∠3與∠ADE相等,由已知∠B與∠3相等,利用等量代換可得出∠B與∠ADE相等,根據(jù)同位角相等兩直線平行得到DE與BC平行,再根據(jù)兩直線平行同位角相等可得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組線段中的三個(gè)長(zhǎng)度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0);⑤m2﹣n2,2mn,m2+n2(m,n為正整數(shù),且m>n)其中可以構(gòu)成直角三角形的有( )
A. 5組 B. 4組 C. 3組 D. 2組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)O作OE⊥AC交AB于E,若BC=4,△AOE的面積為5,則sin∠BOE的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一次函數(shù)y=mx+2的圖象經(jīng)過點(diǎn)(-2,6).
(1)求m的值;
(2)畫出此函數(shù)的圖象;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com