【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.

【答案】(1)y=2x﹣5,;(2)

【解析】

試題分析:(1)把A坐標代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標代入求出n的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;

(2)利用兩點間的距離公式求出AB的長,利用點到直線的距離公式求出點C到直線AB的距離,即可確定出三角形ABC面積.

試題解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式為,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A與B坐標代入y=kx+b中得:,解得:k=2,b=﹣5,則一次函數(shù)解析式為y=2x﹣5;

(2)∵A(2,﹣1),B(,﹣4),直線AB解析式為y=2x﹣5,∴AB==,原點(0,0)到直線y=2x﹣5的距離d==,則S△ABC=ABd=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,若∠A+∠C=120°,則∠A=________,∠B=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若﹣3x2my3與2x4yn是同類項,那么m﹣n=( )
A.0
B.1
C.﹣1
D.﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】扇形統(tǒng)計圖中,某部分所對應(yīng)的扇形圓心角為36°,則該部分所占總體的百分比_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果m、n互為相反數(shù),a,b互為倒數(shù),則|m+n﹣ab|等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小聰和小敏在研究絕對值的問題時,遇到了這樣一道題:
(1)當式子|x﹣1|+|x+5|取最小值時,x應(yīng)滿足的條件是 , 此時的最小值是 . 小聰說:利用數(shù)軸求線段的長可以解決這個問題.如圖,點A,B對應(yīng)的數(shù)分別為﹣5,1,則線段AB的長為6,我發(fā)現(xiàn)也可通過|1﹣(﹣5)|或|﹣5﹣1|來求線段AB的長,即數(shù)軸上兩點間的線段的長等于它們所對應(yīng)的兩數(shù)差的絕對值.

小敏說:我明白了,若點C在數(shù)軸上對應(yīng)的數(shù)為x,線段AC的長就可表示為|x﹣(﹣5)|,那么|x﹣1|表示的是線段的長.
小聰說:對,求式子|x﹣1|+|x+5|的最小值就轉(zhuǎn)化為數(shù)軸上求線段AC+BC長的最小值,而點C在線段AB上時AC+BC=AB最小,最小值為6.
小敏說:點C在線段AB上,即x取﹣5,1之間的有理數(shù)(包括﹣5,1),因此相應(yīng)x的取值范圍可表示為﹣5≤x≤1時,最小值為6.
請你根據(jù)他們的方法解決下面的問題:
(2)小敏說的|x﹣1|表示的是線段的長;
(3)當式子|x﹣3|+|x+2|取最小值時,x應(yīng)滿足的條件是;
(4)當式子|x﹣2|+|x+3|+|x+4|取最小值時,x應(yīng)滿足的條件是;
(5)當式子|x﹣a|+|x﹣b|+|x﹣c|+|x﹣d|(a<b<c<d)取最小值時,x應(yīng)滿足的條件是 , 此時的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,頂點B的坐標為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.

(1)求直線DE的解析式和點M的坐標;

(2)若反比例函數(shù)(x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上;

(3)若反比例函數(shù)(x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程3x24x+80的根的情況是(  )

A.有兩個相等的實數(shù)根B.有兩個不相等的實數(shù)根

C.只有一個實數(shù)根D.沒有實數(shù)根

查看答案和解析>>

同步練習冊答案