【題目】如圖,在△ABC中,∠ACB=90°,過(guò)點(diǎn)C作CD⊥AB于D,∠A=30°,BD=1,則AB的值是( 。.
A.1B.2C.3D.4
【答案】D
【解析】
在直角三角形ABC中,由∠A的度數(shù)求出∠B的度數(shù),在直角三角形BCD中,可得出∠BCD度數(shù)為30°,根據(jù)直角三角形中,30°所對(duì)的直角邊等于斜邊的一半,得到BC=2BD,由BD的長(zhǎng)求出BC的長(zhǎng),在直角三角形ABC中,同理得到AB=2BC,由BC的長(zhǎng)即可求出AB的長(zhǎng).
∵△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,又CD⊥AB,
∴∠BCD=30°,
在Rt△BCD中,∠BCD=30°,BD=1,
可得BC=2BD=2,
在Rt△ABC中,∠A=30°,BC=2,
則AB=2BC=4.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1,∠D=60°,則兩條斜邊的交點(diǎn)E到直角邊BC的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,EB=EC,AE的延長(zhǎng)線交BC于D,則圖中全等的三角形共有_____對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解“陽(yáng)光體育”活動(dòng)的開(kāi)展情況,從全校2000名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每名學(xué)生只能填寫(xiě)一項(xiàng)自己喜歡的活動(dòng)項(xiàng)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)被調(diào)查的學(xué)生共有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,m= ,n= ,表示區(qū)域C的圓心角為 度;
(3)全校學(xué)生中喜歡籃球的人數(shù)大約有 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織“優(yōu)質(zhì)課大賽”活動(dòng),經(jīng)過(guò)評(píng)比有兩名男教師和兩名女教師獲得一等獎(jiǎng),學(xué)校將從這四名教師中隨機(jī)挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過(guò)點(diǎn)F作DE∥BC交AB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,點(diǎn)將線段分成兩部分,如果,那么稱(chēng)點(diǎn)為線段的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類(lèi)似地給出“黃金分割線”的定義:直線將一個(gè)面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱(chēng)直線為該圖形的黃金分割線.
問(wèn)題探究:
(1)研究小組猜想:在中,若點(diǎn)為上的黃金分割點(diǎn),如圖②,則直線是的黃金分割線,你認(rèn)為呢?為什么?
(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)任作一條直線交于點(diǎn),再過(guò)點(diǎn)作直線,交于點(diǎn),連接如圖③,則直線也是的黃金分割線,請(qǐng)你說(shuō)明理由.
(3)如圖④,點(diǎn)是平行四邊形的邊的黃金分割點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),顯然直線是平行四邊形的黃金分割線,請(qǐng)你畫(huà)一條平行四邊形的黃金分割線,使它不經(jīng)過(guò)四邊形各邊黃金分割點(diǎn).
(4)如圖⑤等腰梯形,請(qǐng)你畫(huà)出它的一條黃金分割線,使它不經(jīng)過(guò)各邊的黃金分割點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小蕓設(shè)計(jì)的“作三角形一邊上的中線”的尺規(guī)作圖過(guò)程.
已知:△ABC.
求作:BC邊上的中線AD.
作法:
(1)分別以點(diǎn)B,C為圓心,AC,AB長(zhǎng)為半徑畫(huà)弧,
兩弧相交于P點(diǎn);
(2)作直線AP,AP與BC交于D點(diǎn).
線段AD就是所求作的BC邊上的中線.
根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:連接BP,CP,
∵AB=CP,AC=______,
∴四邊形ABPC是平行四邊形,(______)(填推理的依據(jù))
∴BD=DC,(______)(填推理的依據(jù))
即線段AD是BC邊上的中線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com