【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC 的三個頂點(diǎn)分別是 A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC 以點(diǎn) O 為旋轉(zhuǎn)中心旋轉(zhuǎn) 180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;

(2)平移△ABC,使對應(yīng)點(diǎn) A2 的坐標(biāo)為(0,﹣4),寫出平移后對應(yīng)△A2B2C2的中B2,C2點(diǎn)坐標(biāo).

【答案】1)如圖所示,△A1B1C1 即為所求見解析;(2)如圖所示見解析,△A2B2C2 即為所求,其中 B2 點(diǎn)坐標(biāo)為(3,﹣2),C2 點(diǎn)坐標(biāo)為(3,﹣4).

【解析】

根據(jù)旋轉(zhuǎn)作圖的步驟:①定點(diǎn)一一旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度.再根據(jù)旋轉(zhuǎn)的性質(zhì)進(jìn)行操作即可畫出旋轉(zhuǎn)之后的圖形;

接下來再根據(jù)平移作圖的一般步驟,作出平移之后的圖形,相信你能畫出來.

1)如圖所示,△A1B1C1 即為所求.

2)如圖所示,△A2B2C2 即為所求,其中 B2 點(diǎn)坐標(biāo)為(3,﹣2),C2 點(diǎn)坐標(biāo)為(3,﹣4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了探索代數(shù)式的最小值,

小張巧妙的運(yùn)用了數(shù)學(xué)思想.具體方法是這樣的:如圖,C為線段BD上一動點(diǎn),分別過點(diǎn)BD,連結(jié)AC、EC.已知AB=1DE=5,BD=8,設(shè)BC=x.則,則問題即轉(zhuǎn)化成求AC+CE的最小值.

(1)我們知道當(dāng)A、C、E在同一直線上時,AC+CE的值最小,于是可求得的最小值等于 ,此時x= ;

(2)題中小張巧妙的運(yùn)用了數(shù)學(xué)思想是指哪種主要的數(shù)學(xué)思想;

(選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結(jié)合思想)

(3)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)求出△ABC的面積.

2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1

3)寫出點(diǎn)A1,B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀理解:如圖1,在中,若.求邊上的中線的取值范圍.小聰同學(xué)是這樣思考的:延長,使,連結(jié).利用全等將邊轉(zhuǎn)化到,在中利用三角形三邊關(guān)系即可求出中線的取值范圍.在這個過程中小聰同學(xué)證三角形全等用到的判定方法是__________;中線的取值范圍是__________.

2)問題解決:如圖2,在中,點(diǎn)的中點(diǎn),點(diǎn)邊上,點(diǎn)邊上,若.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80米的圍網(wǎng)在水庫中圍成發(fā)如圖所示①②③的三塊矩形區(qū)域,而且這三塊矩形區(qū)域面積相等.已知矩形區(qū)域ABCD的面積為30m2,設(shè)BC的長度為xm,所列方程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】駕駛員血液中每毫升的酒精含量大于或等于200微克即為酒駕,某研究所經(jīng)實(shí)驗(yàn)測得:成人飲用某品牌38度白酒后血液中酒精濃度y(微克/毫升)與飲酒時間x(小時)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時,yx成反比例).

(1)根據(jù)圖象分別求出血液中酒精濃度上升和下降階段yx之間的函數(shù)表達(dá)式.

(2)問血液中酒精濃度不低于200微克/毫升的持續(xù)時間是多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b(其中a、b、m、n均為整數(shù))

則有:a+b,∴am2+2n2,b2mn,這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當(dāng)a、b、m、n均為正整數(shù)時,若a+b,用含mn的式子分別表示a、b得:a   b   ;

(2)利用所探索的結(jié)論,用完全平方式表示出:7+4   

(3)請化簡:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點(diǎn)朝上是必然事件

B. 明天下雪的概率為,表示明天有半天都在下雪

C. 甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定

D. 了解一批充電寶的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機(jī)摸出一個小球(不放回),再隨機(jī)摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

同步練習(xí)冊答案