【題目】如圖1,平行四邊形ABCD中,AB⊥AC,AB=6,AD=10,點P在邊AD上運動,以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點.
(1)線段AC的長度是 .
(2)如圖2,當⊙P與邊CD相切于點F時,求AP的長;
(3)不難發(fā)現,當⊙P與邊CD相切時,⊙P與平行四邊形ABCD的邊有三個公共點,隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點的個數也在變化,若公共點的個數為4,直接寫出相對應的AP的值的取值范圍 .
【答案】(1)8;(2)AP=;(3)<AP<或AP=5.
【解析】
(1)在Rt△ABC中,直接利用勾股定理求解即可;
(2)連接PF,如圖3,利用平行四邊形的性質和切線的性質可得PF∥AC,進而可證明△DPF∽△DAC,然后根據相似三角形的性質列比例式求解即得AP的長;
(3)先利用平行四邊形的面積求出當⊙P與BC相切時圓的半徑,可發(fā)現此時⊙P與平行四邊形ABCD的邊有5個公共點;再分兩種情況:①⊙P與邊AD、CD分別有兩個公共點;②⊙P過點A、C、D三點,分別求出即可得到答案.
解:(1)∵平行四邊形ABCD中,AB=6,AD=10,
∴BC=AD=10,
∵AB⊥AC,
∴在Rt△ABC中,由勾股定理得:AC=,
故答案為:8;
(2)如圖3所示,連接PF,設AP=x,則DP=10﹣x,PF=x,
∵⊙P與邊CD相切于點F,
∴PF⊥CD,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∵AB⊥AC,
∴AC⊥CD,
∴AC∥PF,
∴△DPF∽△DAC,
∴,即,
解得:x=,
即AP=;
(3)當⊙P與BC相切時,設切點為G,連接PG,如圖4,則SABCD=×6×8×2=10PG,解得:PG=,此時⊙P與平行四邊形ABCD的邊的公共點的個數為5;
①當⊙P與邊AD、CD分別有兩個公共點,與BC沒有公共點時,<AP<,即此時⊙P與平行四邊形ABCD的邊的公共點的個數為4;
②當⊙P過點A、C、D三點,如圖5,⊙P與平行四邊形ABCD的邊的公共點的個數為4,此時AP=5,
綜上所述,AP的值的取值范圍是:<AP<或AP=5,
故答案為:<AP<或AP=5.
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數y=的圖形交于A(a,4)和B(4,1)兩點
(1)求b,k的值;
(2)若點C(x,y)也在反比例函數y=(x>0)的圖象上,求當2≤x≤6時,函數值y的取值范圍;
(3)將直線y=﹣x+b向下平移m個單位,當直線與雙曲線沒有交點時,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格圖中建立平面直角坐標系,一條圓弧經過網格點A(0,4)、B(-4,4)、C(-6,2),請在網格圖中進行如下操作:
(1)利用網格圖確定該圓弧所在圓的圓心D的位置(保留畫圖痕跡);
(2)連接AD、CD,則⊙D的半徑為_ __(結果保留根號),∠ADC的度數為_ __;
(3)若扇形DAC是一個圓錐的側面展開圖,求該圓錐底面半徑.(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的直徑AB長為6,弦AC長為2,∠ACB的平分線交⊙O于點D.
(1)求BD的長;
(2)將△ADC繞D點順時針方向旋轉90°,請補充旋轉后圖形,并計算CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c的圖象交x軸于點A(﹣2,0),點B(1,0),交y軸于點C(0,2).
(1)求二次函數的解析式;
(2)連接AC,在直線AC上方的拋物線上有一點N,過點N作y軸的平行線,交直線AC于點F,設點N的橫坐標為n,線段NF的長為l,求l關于n的函數關系式;
(3)若點M在x軸上,是否存在點M,使以B、C、M為頂點的三角形是等腰三角形,若存在,直接寫出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某中學九年級數學活動小組選定測量學校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1:,求大樹的高度.(結果保留一位小數)參考數據:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x2+5x+6,翻開紙片③是3x2﹣x﹣2.
解答下列問題
(1)求紙片①上的代數式;
(2)若x是方程2x=﹣x﹣9的解,求紙片①上代數式的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】時代天街某商場經營的某品牌書包,6月份的銷售額為20000元,7月份因為廠家提高了出廠價,商場把該品牌書包售價上漲20%,結果銷量減少50個,使得銷售額減少了2000元.
(1)求6月份該品牌書包的銷售單價;
(2)若6月份銷售該品牌書包獲利8000元,8月份商場為迎接中小學開學做促銷活動,該書包在6月售價的基礎上一律打八折銷售,若成本上漲5%,則銷量至少為多少個,才能保證8月份的利潤比6月份的利潤至少增長6.25%?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com