【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
【答案】(1)證明過程見解析;(2)
【解析】試題分析:(1)由等腰三角形的性質(zhì)得到∠EDC=∠C,由圓外接四邊形的性質(zhì)得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可證得結(jié)論;(2)連接AE,由AB為直徑,可證得AE⊥BC,由(1)知AB=AC,由“三線合一”定理得到BE=CE=BC=,由割線定理可證得結(jié)論.
試題解析:(1)∵ED=EC, ∴∠EDC=∠C, ∵∠EDC=∠B, ∴∠B=∠C, ∴AB=AC;
(2)連接AE, ∵AB為直徑, ∴AE⊥BC, 由(1)知AB=AC, ∴BE=CE=BC=,
∵CECB=CDCA,AC=AB=4, ∴2=4CD, ∴CD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為
A(6,0)、B(0,2),以AB為斜邊在右上方作Rt△ABC.設(shè)點(diǎn)C坐標(biāo)為(x,y),則(x+y)的最大值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖“L”形圖形的面積有如下四種表示方法:①a2-b2;
②a(a-b)+b(a-b);③(a+b)(a-b);④(a-b)2.其中正確
的表示方法有( 。
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把2100個連續(xù)的正整數(shù)1、2、3、……、2100,按如圖方式排列成一個數(shù)表,如圖用一個正方形框在表中任意框住4個數(shù),設(shè)左上角的數(shù)為x.
(1) 另外三個數(shù)用含x的式子表示出來,從小到大排列是___________
(2) 被框住4個數(shù)的和為416時,x值為多少?
(3) 能否框住四個數(shù)和為324?若能,求出x值;若不能,說明理由
(4) 從左到右,第1至第7列各數(shù)之和分別為a1、a2、a3、a4、a5、a6、a7,請直接寫出7個數(shù)中最大的數(shù)與最小的數(shù)之差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)如圖①,邊長為4的等邊△OAB位于平面直角坐標(biāo)系中,將△OAB折疊,使點(diǎn)B落在OA的中點(diǎn)處,則折痕長為 ;
(2)如圖②,矩形OABC位于平面直角坐標(biāo)系中,其中OA=8,AB=6,將矩形沿線段MN折疊,點(diǎn)B落在x軸上,其中AN=AB,求折痕MN的長;
問題解決:
(3)如圖③,四邊形OABC位于平面直角坐標(biāo)系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于點(diǎn)A,點(diǎn)Q(4,3)為四邊形內(nèi)部一點(diǎn),將四邊形折疊,使點(diǎn)B落在x軸上,問是否存在過點(diǎn)Q的折痕,若存在,求出折痕長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種紙一張的厚度約為0.0089cm,用科學(xué)記數(shù)法表示這個數(shù)為( )
A.8.9×103
B.8.9×10﹣4
C.8.9×10﹣3
D.89×10﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com