【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF3700米,從飛機上觀測山頂目標(biāo)C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo)C的俯角是50°.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20

1)直接寫出∠ACB的大;

2)求這座山的高度CD

【答案】1)∠ACB;(2)這座山的高度約是1900米.

【解析】

1)利用三角形內(nèi)角和定理求得∠ACE、∠BCE的大小,結(jié)合圖形求得答案;
2)設(shè)EC=x,則在RTBCE中,可表示出BE,在RtACE中,可表示出AE,繼而根據(jù)AB+BE=AE,可得出方程,解出即可得出答案.

解:(1)如圖,在直角AEC中,∠ACE90°45°45°

在直角BEC中,∠BCE90°50°40°

則∠ACB=∠ACE﹣∠BCE45°40°

2)設(shè)ECx,

RtBCE中,tanEBC,

BEx,

RtACE中,tanEAC

AEx,

AB+BEAE

300+xx,

解得:x1800,

這座山的高度CDDEEC370018001900(米).

答:這座山的高度約是1900米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家訪是學(xué)校與家庭溝通的有效渠道,是形成教育合力的關(guān)鍵,是轉(zhuǎn)化后進生的催化劑.某市教育局組織全市中小學(xué)教師開展家訪活動活動過程中,教育局隨機抽取了部分教師調(diào)查其近兩周家訪次數(shù),將采集到的數(shù)據(jù)按家訪次數(shù)分成五類,并分別繪制了下面的兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,解答下列問題:

1)請把條形統(tǒng)計圖補充完整;

2)所抽取的教師中,近兩周家訪次數(shù)的眾數(shù)是   次,平均每位教師家訪   次;

3)若該市有12000名教師,請估計近兩周家訪不少于3次的教師有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同型號的甲、乙兩輛車加滿氣體燃料后均可行駛210km.它們各自單獨行駛并返回的最遠(yuǎn)距離是105km.現(xiàn)在它們都從A地出發(fā),行駛途中停下來從甲車的氣體燃料桶抽一些氣體燃料注入乙車的氣體燃料桶,然后甲車再行駛返回A地,而乙車?yán)^續(xù)行駛,到B地后再行駛返回A地.則B地最遠(yuǎn)可距離A地( 。

A.120kmB.140kmC.160kmD.180km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,過點的拋物線軸的另一個交點為

1)求拋物線的解析式和點的坐標(biāo);

2是直線上方拋物線上一動點,.設(shè),請求出的最大值和此時點的坐標(biāo);

3軸上一動點,連接,將繞點逆時針旋轉(zhuǎn)得線段,若點恰好落在拋物線上,請直接寫出此時點的坐標(biāo).

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車經(jīng)營店銷售型,型兩種品牌自行車,今年進貨和銷售價格如下表:(今年1年內(nèi)自行車的售價與進價保持不變)

型車

型車

進貨價格(/)

1000

1100

銷售價格(/)

1500

今年經(jīng)過改造升級后,型車每輛銷售價比去年增加400元.已知型車去年1月份銷售總額為3.6萬元,今年1月份型車的銷售數(shù)量與去年1月份相同,而銷售總額比去年1月份增加

1)若設(shè)今年1月份的型自行車售價為/輛,求的值?(用列方程的方法解答)

2)該店計劃8月份再進一批型和型自行車共50輛,且型車數(shù)量不超過型車數(shù)量的2倍,應(yīng)如何進貨才能使這批自行車獲利最多?

3)該店為吸引客源,準(zhǔn)備增購一種進價為500元的型車,預(yù)算用8萬元購進這三種車若干輛,其中型與型的數(shù)量之比為,則該店至少可以購進三種車共多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點C,則點C的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直徑,延長線上一點,于點C,的弦,,垂足為D

1)求證:;

2)過點,交于點E,交CD于點F,連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(基礎(chǔ)鞏固)

1)如圖1,在△ABC中,DAB上一點,∠ACD=∠B.求證:AC2ADAB

(嘗試應(yīng)用)

2)如圖2,在ABCD中,EBC上一點,FCD延長線上一點,∠BFE=∠A.若BF4BE3,求AD的長.

(拓展提高)

3)如圖3,在菱形ABCD中,EAB上一點,F是△ABC內(nèi)一點,EFAC,AC2EF,∠EDFBAD,AE2,DF5,求菱形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù),,是常數(shù),)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:

-1

0

1

3

3

3

且當(dāng)時,與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②3是關(guān)于的方程的一個根;③.其中,正確結(jié)論的個數(shù)是(

A.0B.1C.2/span>D.3

查看答案和解析>>

同步練習(xí)冊答案