【題目】如圖,將矩形ABCD沿對角線AC翻折,點B落在點E處,EC交AD于F.
(1)求證:△AEF≌△CDF;
(2)若AB=4,BC=8,EF=3,求圖中陰影部分的面積。
【答案】(1)見解析;(2)10.
【解析】(1)根據(jù)矩形性質(zhì)和折疊性質(zhì)可得:∠E=∠D,∠AFE=∠CFD,AE=CD,
故△AEF≌△CDF(AAS);
(2)結(jié)合(1)可得陰影部分的面積=S△ADC-S△FDC=AD·DC-FD·DC,代入已知數(shù)可得.
解:(1)∵四邊形ABCD是矩形,
∴AB=CD,∠B=∠D=90,
∵將矩形ABCD沿對角線AC翻折,點B落在點E處,
∴∠E=∠B,AB=AE,
∴AE=CD,∠E=∠D,
在△AEF與△CDF中,
∠E=∠D,∠AFE=∠CFD,AE=CD,
∴△AEF≌△CDF(AAS);
(2)根據(jù)(1)得:△AEF≌△CDF,EF=3
∴DF=EF=3
∵AB=4,BC=8,
∴AD=BC=8, CD=AB=4
∴陰影部分的面積=S△ADC-S△FDC=AD·DC-FD·DC
=×8×4-×3×4
=16-6=10
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2(如圖(2));正方形A2B2C2D2的面積為________,以此下去…,則正方形AnBnCnDn的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)如圖,在四邊形ABCD中,AD∥BC,點E在BC的延長線上,CE=BC,連接AE,交CD邊于點F,且CF=DF.(1)求證:AD=BC;(2)連接BD、DE,若BD⊥DE,求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12,第2次輸出的結(jié)果是6,第3次輸出的結(jié)果是 ,依次繼續(xù)下去…,第2013次輸出的結(jié)果是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AEF,延長EF交邊BC于點G,連結(jié)AG,CF,則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=;其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB繞著一點旋轉(zhuǎn)到△A′OB′的位置,可以看到點A旋轉(zhuǎn)到點A′,OA旋轉(zhuǎn)到OA′,∠AOB旋轉(zhuǎn)到∠A′OB′,這些都是互相對應(yīng)的點、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點B的對應(yīng)點是點______;線段OB的對應(yīng)線段是線段_____;∠A的對應(yīng)角是______;旋轉(zhuǎn)中心是點_______;旋轉(zhuǎn)的角度是______度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小穎和小強上山游玩,小穎乘坐纜車,小強步行,兩人相約在山頂?shù)睦|車終點會和,已知小強行走到纜車終點的路程是纜車到山頂?shù)木路長的倍,小穎在小強出發(fā)后分才乘上纜車,纜車的平均速度為米/分,若圖中的折線表示小強在整個行走過程中的路程(米)與出發(fā)時間(分)之間的關(guān)系的圖像,請回答下列問題.
(1)小強行走的總路程是 米,他途中休息了 分;
(2)分別求出小強在休息前和休息后所走的兩段路程的速度;
(3)當小穎到達纜車終點時,小強離纜車終點的路程是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A,B,C,D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com