【題目】在矩形ABCD中,M,N,P,Q分別為邊AB,BC,CDDA上的點(不與端點重合),對于任意矩形ABCD,下面四個結(jié)論中,

①存在無數(shù)個四邊形MNPQ是平行四邊形;

②存在無數(shù)個四邊形MNPQ是矩形;

③存在無數(shù)個四邊形MNPQ是菱形;

④至少存在一個四邊形MNPQ是正方形,

其中正確的結(jié)論的個數(shù)為( 。

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)矩形的判定和性質(zhì),菱形的判定,正方形的判定,平行四邊形的判定定理即可得到結(jié)論.

解:①如圖,∵四邊形ABCD是矩形,連接ACBD交于O,

過點O直線MPQN,分別交AB,BC,CD,ADM,N,P,Q,

則四邊形MNPQ是平行四邊形,

故存在無數(shù)個四邊形MNPQ是平行四邊形;故正確;

②如圖,當PMQN時,四邊形MNPQ是矩形,故存在無數(shù)個四邊形MNPQ是矩形;故正確;

③如圖,當PMQN時,存在無數(shù)個四邊形MNPQ是菱形;故正確;

④當四邊形MNPQ是正方形時,MQPQ

則△AMQ≌△DQP,

AMQDAQPD,

PDBM

ABAD,

∴四邊形ABCD是正方形,

當四邊形ABCD為正方形時,四邊形MNPQ是正方形,故錯誤;

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:點邊上的一個動點.

1)如圖1,若是等邊三角形,以為邊在的同側(cè)作等邊,連接.試比較的大小,并說明理由;

2)如圖2,若中,,以為底邊在的同側(cè)作等腰,且,連接.試判斷的位置關系,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點和點,與軸交于點.和點關于軸對稱,點是線段上的一個動點.設點的坐標為,過點軸的垂線交拋物線于點,交直線于點

1)求拋物線的解析式;

2)連接,當點運動到何處時,面積最大?最大面積是多少?并求出此時點的坐標;

3)在第問的前提下,在軸上找一點,使值最小,求出的最小值并直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,半徑OCAB于點O,點D的中點,連接CD、OD.下列四個結(jié)論:①ACOD;②CE=OE;③ODEADO;④∠ADC=BOD.其中正確結(jié)論的序號是(

A.①④B.①②④C.②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,滑翔運動員在空中測量某寺院標志性高塔“云端塔”的高度,空中的點P距水平地面BE的距離為200米,從點P觀測塔頂A的俯角為33°,以相同高度繼續(xù)向前飛行120米到達點C,在C處觀測點A的俯角是60°,求這座塔AB的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過點C1,2)分別作x軸、y軸的平行線,交直線y=﹣x+8AB兩點,若反比例函數(shù)yx0)的圖象與△ABC有公共點,則k的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點. 沿直線折疊矩形,使點落在邊上,與點重合.分別以,所在的直線為軸,軸建立平面直角坐標系,拋物線經(jīng)過兩點.

1)求及點的坐標;

2)一動點從點出發(fā),沿以每秒個單位長的速度向點運動, 同時動點從點出發(fā),沿以每秒個單位長的速度向點運動, 當點運動到點時,兩點同時停止運動.設運動時間為秒,當為何值時,以,為頂點的三角形與相似?

3)點在拋物線對稱軸上,點在拋物線上,是否存在這樣的點與點 N,使以,, 為頂點的四邊形是平行四邊形?若存在,請直接寫出點與點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于,B兩點,下列說法錯誤的是(

A.B.圖象的對稱軸為直線

C.B的坐標為D.時,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳天虹某商場從廠家批發(fā)電視機進行零售,批發(fā)價格與零售價格如下表:

電視機型號

批發(fā)價(/)

1500

2500

零售價(/)

2025

3640

若商場購進甲、乙兩種型號的電視機共50臺,用去9萬元.

(1)求商場購進甲、乙型號的電視機各多少臺?

(2)元旦商場決定進行優(yōu)惠促銷:以零售價的七五折銷售乙種型號電視機,兩種電視機銷售完畢,商場共獲利8.5%,求甲種型號電視機打幾折銷售?

查看答案和解析>>

同步練習冊答案