【題目】中華文化歷史悠久,包羅萬象.某校為了加強(qiáng)學(xué)生對中華傳統(tǒng)文化的認(rèn)識和理解,營造校園文化氛圍,舉辦了“弘揚(yáng)中華傳統(tǒng)文化,做新時(shí)代的中學(xué)生”的知識競賽.以下是從七年、八年兩個(gè)年級隨機(jī)抽取20名同學(xué)的測試成績進(jìn)行調(diào)查分析,成績?nèi)缦拢?/span>
七年級: 76 88 93 65 78 94 89 68 95 50
89 88 89 89 77 94 87 88 92 91
八年級: 74 97 96 89 98 74 69 76 72 78
99 72 97 76 99 74 99 73 98 74
(1)根據(jù)上面的數(shù)據(jù),將下列表格補(bǔ)充完整,整理、描述數(shù)據(jù):
七年級 | 1 | 2 | 6 | ||
八年級 | 0 | 1 | 10 | 1 | 8 |
(說明:成績90分及以上為優(yōu)秀,60分以下為不合格)分析數(shù)據(jù):
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級 | 84 | 88.5 | |
八年級 | 84.2 | 74 |
(2)為調(diào)動學(xué)生學(xué)習(xí)傳統(tǒng)文化的積極性,七年級根據(jù)學(xué)生的成績制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的學(xué)生將獲得獎(jiǎng)勵(lì).如果想讓一半左右的學(xué)生能獲獎(jiǎng),應(yīng)根據(jù)______來確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”);
(3)若八年級有800名學(xué)生,試估計(jì)八年級學(xué)生成績優(yōu)秀的人數(shù);
【答案】(1)從左到右從上到下依次:3,8,89,77;(2)中位數(shù);(3)320
【解析】
(1)根據(jù)題意中給出的數(shù)據(jù),直接找出答案即可;
(2)根據(jù)中位數(shù)的定義即可得到結(jié)論;
(3)用800×八年級學(xué)生成績優(yōu)秀的人數(shù)所占的百分比即可得到結(jié)論.
解:(1)根據(jù)題意,得:七年級人數(shù):70≤x≤79的有3人,
80≤x≤89的有8人,
七年級知識競賽的成績的眾數(shù)為89,
八年級知識競賽的成績的中位數(shù)為:=77;
∴將下列表格補(bǔ)充完整:從左到右從上到下依次為:3,8,89,77,;
(2)如果想讓一半左右的學(xué)生能獲獎(jiǎng),應(yīng)根據(jù)中位數(shù)來確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適;
故答案為:中位數(shù);
(3)800×=320(人)
答:估計(jì)八年級學(xué)生成績優(yōu)秀的人數(shù)約為320人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動;點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的 速度勻速移動.點(diǎn)P、Q分別從起點(diǎn)同時(shí)出發(fā),移動到某一位置時(shí)所需時(shí)間為t秒.
(1)當(dāng)t= 時(shí),PQ∥AB
(2)當(dāng)t為何值時(shí),△PCQ的面積等于5cm2?
(3)在P、Q運(yùn)動過程中,在某一時(shí)刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(一)(新知學(xué)習(xí)):圓內(nèi)接四邊形的判斷定理:如果四邊形對角互補(bǔ),那么這個(gè)四邊形內(nèi)接于圓(即如果四邊形EFGH的對角互補(bǔ),那么四邊形EFGH的四個(gè)頂點(diǎn)E、F、G、H都在同個(gè)圓上).
(二)(問題解決):已知⊙O的直徑為4,AB,CD是⊙O的直徑.P是上任意一點(diǎn),過點(diǎn)P分別作AB,CD的垂線,垂足分別為N,M.
(1)若直徑AB⊥CD,點(diǎn)P為上一動點(diǎn)(不與B、C重合)(如圖一).
① 證明:四邊形PMON內(nèi)接于某圓;②證明MN的長為定值,并求其定值;
(2)若直徑AB與CD相交成120°角.
① 當(dāng)點(diǎn)P運(yùn)動到的中點(diǎn)時(shí)(如圖二),求MN的長;
② 當(dāng)點(diǎn)P(不與B、C重合)從B運(yùn)動到C的過程中(如圖三),證明MN的長為定值.
(3)試問當(dāng)直徑AB與CD相交角∠BOC=______度時(shí),MN的長取最大值,其最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,若將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A′,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)C′,點(diǎn)D為A′B的中點(diǎn),連接AD.則點(diǎn)A的運(yùn)動路徑與線段AD、A′D圍成的陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點(diǎn)C(0,-2),頂點(diǎn)D的坐標(biāo)為(1,),與軸交于A、B兩點(diǎn).
(1)求拋物線的解析式.
(2)連接AC,E為直線AC上一點(diǎn),當(dāng)△AOC∽△AEB時(shí),求點(diǎn)E的坐標(biāo)和的值.
(3)點(diǎn)F(0,)是軸上一動點(diǎn),當(dāng)為何值時(shí),的值最小.并求出這個(gè)最小值.
(4)點(diǎn)C關(guān)于軸的對稱點(diǎn)為H,當(dāng)取最小值時(shí),在拋物線的對稱軸上是否存在點(diǎn)Q,使△QHF是直角三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個(gè)交點(diǎn)在和之間,其部分圖象如圖所示.則下列結(jié)論:①;②;③;④(為實(shí)數(shù));⑤點(diǎn),,是該拋物線上的點(diǎn),則,正確的個(gè)數(shù)有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的正方形中,點(diǎn)是上一點(diǎn),點(diǎn)是上一點(diǎn).點(diǎn)關(guān)于直線的對稱點(diǎn)恰好在延長線上,交于點(diǎn).點(diǎn)為的中點(diǎn),若,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長為 30 米的籬笆 圍成.已知墻長為 18 米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長為 x 米,若平行于墻的一邊長不小 于 8 米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4張相同的卡片上分別寫有數(shù)字2,3,4,5將卡片的背面向上,洗勻后從中任意抽取1 張,將卡片上的數(shù)字作為被減數(shù);一只不透明的袋子中裝有標(biāo)號2,3,4的3個(gè)小球,這些球除標(biāo)號外都相同,攪勻后從中任意摸出一個(gè)球,將摸到的球的標(biāo)號作為減數(shù).
(1)用樹狀圖或列表的方法求這兩個(gè)數(shù)的差為0的概率;
(2)如果游戲規(guī)則規(guī)定:當(dāng)抽到的這兩個(gè)數(shù)的差為非負(fù)數(shù)時(shí),則甲獲勝;否則,乙獲勝,你認(rèn)為這樣的規(guī)則公平嗎?如果不公平,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com