【題目】為了進(jìn)一步普及足球知識(shí),傳播足球文化,我市舉行了“足球進(jìn)校園”知識(shí)競(jìng)賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
獲獎(jiǎng)等次 | 頻數(shù) | 頻率 |
一等獎(jiǎng) | 10 | 0.05 |
二等獎(jiǎng) | 20 | 0.10 |
三等獎(jiǎng) | 30 | b |
優(yōu)勝獎(jiǎng) | a | 0.30 |
鼓勵(lì)獎(jiǎng) | 80 | 0.40 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a= , b= , 且補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計(jì)圖來(lái)描述獲獎(jiǎng)分布情況,問(wèn)獲得優(yōu)勝獎(jiǎng)對(duì)應(yīng)的扇形圓心角的度數(shù)是多少?
(3)若我市初中生共有16000人,競(jìng)賽活動(dòng)獲獎(jiǎng)率為40%,獲三等獎(jiǎng)以上的學(xué)生表示對(duì)“足球比較喜歡”,請(qǐng)你估計(jì)我市初中生對(duì)“足球比較喜歡”的有多少人?
【答案】
(1)60;0.15;
(2)解:優(yōu)勝獎(jiǎng)所在扇形的圓心角為0.30×360°=108°
(3)解:16000×40%×(0.05+0.10)=960(人).
答:獲三等獎(jiǎng)以上的學(xué)生表示對(duì)“足球比較喜歡”,請(qǐng)你估計(jì)我市初中生對(duì)“足球比較喜歡”的有960人
【解析】解:(1)樣本總數(shù)為10÷0.05=200人, a=200﹣10﹣20﹣30﹣80=60人,
b=30÷200=0.15,
所以答案是60,0.15;
【考點(diǎn)精析】關(guān)于本題考查的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖,需要了解特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖);能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】振興中學(xué)某班的學(xué)生對(duì)本校學(xué)生會(huì)倡導(dǎo)的“抗震救災(zāi),眾志成城”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形的高度之比為3∶4∶5∶8∶6,又知此次調(diào)查中捐款25元和30元的學(xué)生一共42人.
(1)他們一共調(diào)查了多少人?
(2)這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
(3)若該校共有1560名學(xué)生,估計(jì)全校學(xué)生捐款多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),∠BOC=130°.
(1)求證:OB=DC;
(2)求∠DCO的大小;
(3)設(shè)∠AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)3﹣﹣2
(2)(2﹣)(2+)+(2﹣)2﹣
(3)解方程組
(4)
(5)求x的值:25(x+2)2﹣36=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成下列問(wèn)題:
(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.
(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)E為BA的中點(diǎn)(E到A、C兩點(diǎn)的距離相等),井在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù),求出CE的長(zhǎng).
(3)O為原點(diǎn),取OC的中點(diǎn)M,分OC分為兩段,記為第一次操作:取這兩段OM、CM的中點(diǎn)分別為了N1、N2,將OC分為4段,記為第二次操作,再取這兩段的中點(diǎn)將OC分為8段,記為第三次操作,第六次操作后,OC之間共有多少個(gè)點(diǎn)?求出這些點(diǎn)所表示的數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在平行四邊形ABCD中,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求證:
(1)△AEH≌△CGF;
(2)四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)A(﹣ ,1).
(1)試確定此反比例函數(shù)的解析式;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),將線段OA繞O點(diǎn)順時(shí)針旋轉(zhuǎn)30°得到線段OB.判斷點(diǎn)B是否在此反比例函數(shù)的圖象上,并說(shuō)明理由;
(3)已知點(diǎn)P(m, m+6)也在此反比例函數(shù)的圖象上(其中m<0),過(guò)P點(diǎn)作x軸的垂線,交x軸于點(diǎn)M.若線段PM上存在一點(diǎn)Q,使得△OQM的面積是 ,設(shè)Q點(diǎn)的縱坐標(biāo)為n,求n2﹣2 n+9的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在熱氣球上A處測(cè)得塔頂B的仰角為52°,測(cè)得塔底C的俯角為45°,已知A處距地面98米,求塔高BC.(結(jié)果精確到0.1米)
【參考數(shù)據(jù):sin52°=0.79,cos52°=0.62,tan52°=1.28】
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,底面積為30cm2的空?qǐng)A柱容器內(nèi)水平放置著由兩個(gè)實(shí)心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過(guò)程中,水面高度h(cm)與注水時(shí)間t(s)之間的關(guān)系如圖②.
(1)求圓柱形容器的高和勻速注水的水流速度;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱體的高和底面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com