【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P,Q是直線l上的兩個(gè)動(dòng)點(diǎn),且點(diǎn)P在第二象限,點(diǎn)Q在第四象限,∠POQ=135°.

(1)求△AOB的周長(zhǎng);

(2)設(shè)AQ=t>0,試用含t的代數(shù)式表示點(diǎn)P的坐標(biāo);

(3)當(dāng)動(dòng)點(diǎn)P,Q在直線l上運(yùn)動(dòng)到使得△AOQ與△BPO的周長(zhǎng)相等時(shí),記tan∠AOQ=m,若過(guò)點(diǎn)A的二次函數(shù)y=ax2+bx+c同時(shí)滿足以下兩個(gè)條件:

①6a+3b+2c=0;

②當(dāng)m≤x≤m+2時(shí),函數(shù)y的最大值等于,求二次項(xiàng)系數(shù)a的值.

【答案】(1) △AOB周長(zhǎng)為2+(2) P(﹣,1+).(3) a的值為或﹣2﹣2.

【解析】

試題分析:(1)先求出A、B坐標(biāo),再求出OB、OA、AB即可解決問(wèn)題.(2)由△PBO∽△OAQ,得=,求出PB,再根據(jù)等腰直角三角形性質(zhì)可以求得點(diǎn)P坐標(biāo).(3)先求出m的值,分①a>0,②a<0,兩種情形,利用二次函數(shù)性質(zhì)分別求解即可.

試題解析:(1)在函數(shù)y=﹣x+1中,令x=0,得y=1,

∴B(0,1),

令y=0,得x=1,

∴A(1,0),

則OA=OB=1,AB=,

∴△AOB周長(zhǎng)為1+1+=2+

(2)∵OA=OB,

∴∠ABO=∠BAO=45°,

∴∠PBO=∠QAO=135°,

設(shè)∠POB=x,則∠OPB=∠AOQ=135°﹣x﹣90°=45°﹣x,

∴△PBO∽△OAQ,

=,

∴PB==

過(guò)點(diǎn)P作PH⊥OB于H點(diǎn),

則△PHB為等腰直角三角形,

∵PB=,

∴PH=HB=,

∴P(﹣,1+).

(3)由(2)可知△PBO∽△OAQ,若它們的周長(zhǎng)相等,則相似比為1,即全等,

∴PB=AQ,

=t,

∵t>0,

∴t=1,

同理可得Q(1+,﹣),

∴m==﹣1,

∵拋物線經(jīng)過(guò)點(diǎn)A,

∴a+b+c=0,

又∵6a+3b+2c=0,

∴b=﹣4a,c=3a,

對(duì)稱軸x=2,取值范圍﹣1≤x+1,

①若a>0,則開(kāi)口向上,

由題意x=﹣1時(shí)取得最大值=2+2,

即(﹣1)2a+(﹣1)b+c=2+2,

解得a=

②若a<0,則開(kāi)口向下,

由題意x=2時(shí)取得最大值2+2,

即4a+2b+c=2+2,

解得a=﹣2﹣2.

綜上所述所求a的值為或﹣2﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列一元二次方程中沒(méi)有實(shí)數(shù)根的方程是( 。

A. (x﹣1)2=1 B. x2+2x﹣10=0 C. x2+4=7 D. x2+x+1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD 中,AB=3,BC=4,E,F 是對(duì)角線 AC上的兩個(gè)動(dòng)點(diǎn),分別從 A,C 同時(shí)出發(fā), 相向而行,速度均為 1cm/s,運(yùn)動(dòng)時(shí)間為 t 秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)后就停止運(yùn)動(dòng).

1)若 G,H 分別是 ABDC 中點(diǎn),求證:四邊形 EGFH 始終是平行四邊形.

2)在(1)條件下,當(dāng) t 為何值時(shí),四邊形 EGFH 為矩形.

3)若 G,H 分別是折線 A﹣B﹣C,C﹣D﹣A 上的動(dòng)點(diǎn),與 EF 相同的速度同時(shí)出發(fā),當(dāng) t 為何值時(shí),四邊形 EGFH 為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)y2x24kx+1.當(dāng)xl時(shí),yx的增大而減小,則k的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列3×3網(wǎng)格都是由9個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?個(gè)空白小正方形中,按下列要求涂上陰影:

(1)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形;

(2)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形,但不是軸對(duì)稱圖形;

(3)選取2個(gè)涂上陰影,使5個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形。

(請(qǐng)將三個(gè)小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列判斷:
①一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形.
②對(duì)角線相等的四邊形是矩形.
③對(duì)角形互相垂直且相等的四邊形是正方形.
④有一條對(duì)角線平分一個(gè)內(nèi)角的平行四邊形為菱形.
其中,不正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1∥l2∥l3,一等腰直角三角形ABC的三個(gè)頂點(diǎn)A,B,C分別在l1,l2,l3上,∠ACB=90°,AC交l2于點(diǎn)D,已知l1與l2的距離為1,l2與l3的距離為3,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(   )

A. 直線AB和直線a不能是同一條直線 B. 射線AB和射線BA是兩條射線

C. 線段AB和線段BA是兩條線段 D. 直線AB和直線BA是兩條直線

查看答案和解析>>

同步練習(xí)冊(cè)答案