【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過AAE的垂線交ED于點P,若AE=AP=1,PB=,下列結(jié)論:①△APD≌△AEB;EBED;PD=,其中正確結(jié)論的序號是(  )

A. ①② B. ①③ C. ②③ D. ①②③

【答案】A

【解析】

①利用同角的余角相等,易得∠EAB=PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;②利用①中的全等,可得∠APD=AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;③在RtAEP中,利用勾股定理,可求得EP、BE的長,再依據(jù)APD≌△AEB,即可得出PD=BE,據(jù)此即可判斷.

①∵∠EAB+BAP=90°,PAD+BAP=90°,

∴∠EAB=PAD,

又∵AE=AP,AB=AD,

∴△APD≌△AEB,故①正確;

②∵△APD≌△AEB,

∴∠APD=AEB,

又∵∠AEB=AEP+BEP,APD=AEP+PAE,

∴∠BEP=PAE=90°,

EBED,故②正確;

③在RtAEP中,

AE=AP=1,

EP=,

又∵PB=

BE=,

∵△APD≌△AEB,

PD=BE=,故③錯誤,

故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們運用圖(Ⅰ)中大正方形的面積可表示為(a+b)2,也可表示為c3+4(ab),即(a+b)2=c2+4(ab)由此推導出一個重要的結(jié)論a2+b2=c2這個重要的結(jié)論就是著名的勾股定理.這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學規(guī)律和公式的方法,簡稱無字證明”.

(1)請你用圖(Ⅱ)(2002年國際數(shù)學家大會會標)的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).

(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+2y)2=x2+4xy+4y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,已知:,,,以斜邊AB的中點P為旋轉(zhuǎn)中心,把這個三角形按逆時針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AB的直徑,直線L相切于點C,CDABE,直線L,垂足為FBFC

圖中哪條線段與AE相等?試證明你的結(jié)論;

,,求AB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);

(2)在圖①中,若∠AOC,直接寫出∠DOE的度數(shù)(用含的代數(shù)式表示);

(3)將圖①中的∠DOC繞頂點O順時針旋轉(zhuǎn)至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于圓O,四邊形ABCO是平行四邊形,則∠ADC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號,單個盒子的容量和價格如表格所示.現(xiàn)有15升食物需要存放且要求每個盒子都要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性每個返還現(xiàn)金1.5元,則該食堂購買盒子所需的最少費用是

型號

A

B

單個盒子容量(升)

2

3

單價(元)

5

6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某檢修小組乘汽車從地出發(fā),在東西走向的馬路上檢修線路,如果規(guī)定向東行駛為正,一天中七個檢修點的行駛記錄如下(單位:):

-4,+7,-9,+8,+6,-4,-3.

(1)收工時汽車共行駛了多少千米?

(2)收工時,汽車距地多遠?

(3)在檢修時,第幾個檢修點離地最遠,最遠距離是多少?

查看答案和解析>>

同步練習冊答案