【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC⊙OB,垂足為O,連接ABOC于點(diǎn)D∠CAD=∠CDA

1)判斷AC⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若OA=5,OD=1,求線段AC的長.

【答案】1)線段AC⊙O的切線。理由見解析(212

【解析】

解:(1)線段AC⊙O的切線。理由如下:

∵∠CAD=∠CDA(已知),∠BDO=∠CDA(對頂角相等),

∴∠BDO=∠CAD(等量代換)。

∵OA=OB⊙O的半徑),∴∠B=∠OAB(等邊對等角)。

∵OB⊥OC(已知),∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°。

線段AC⊙O的切線。

2)設(shè)AC=x

∵∠CAD=∠CDA(已知),∴DC=AC=x(等角對等邊)。

∵OA=5OD=1,∴OC=OD+DC=1+x;

由(1)知,AC⊙O的切線,

Rt△OAC中,根據(jù)勾股定理得,OC2=AC2+OA2,即(1+x2=x2+52,解得x=12。

∴AC=12

1)根據(jù)已知條件“∠CAD=∠CDA”、對頂角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根據(jù)等腰三角形OAB的兩個(gè)底角相等、直角三角形的兩個(gè)銳角互余的性質(zhì)推知

∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°。所以線段AC⊙O的切線。

2)根據(jù)等角對等邊可以推知AC=DC,所以由圖形知OC=OD+CD;然后利用(1)中切線的性質(zhì)可以在在Rt△OAC中,根據(jù)勾股定理來求AC的長度。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長.

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說明理由;

(2)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCA'B'C'關(guān)于直線MN對稱,A'B'C'A″B″C″關(guān)于直線EF對稱.

(1)畫出直線EF;

(2)直線MNEF相交于點(diǎn)O,試探究∠BOB″與直線MN,EF所夾銳角∠α的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi)已點(diǎn)A3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn)將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn)

1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________ ;

2)把這些點(diǎn)按ABCDA順次連接起來這個(gè)圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F

1)求證:AE=EF;

2)如圖2,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn)其余條件不變,(1)中的結(jié)論是否仍然成立?  ;(填成立不成立);

3)如圖3,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC延長線上的一點(diǎn)其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請證明,若不成立說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,為銳角.點(diǎn)為射線上一動(dòng)點(diǎn),連接,以為一邊且在的右側(cè)作正方形

解答下列問題:

如果,

①當(dāng)點(diǎn)在線段上時(shí)(與點(diǎn)不重合),如圖2,線段、之間的位置關(guān)系為________,數(shù)量關(guān)系為________.

②當(dāng)點(diǎn)在線段的延長線上時(shí),如圖3,①中的結(jié)論是否仍然成立,為什么?

如果,,點(diǎn)在線段上運(yùn)動(dòng).試探究:當(dāng)滿足一個(gè)什么條件時(shí),(點(diǎn)、重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角板的兩個(gè)直角重疊在一起,∠A=30°,∠C=45°,△COD固定不動(dòng),△AOB繞著O點(diǎn)逆時(shí)針旋轉(zhuǎn)α°(0°<α<180° ),使兩個(gè)三角形至少有一組邊所在直線垂直,則α=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

同步練習(xí)冊答案