【題目】如圖1,在中,為銳角.點為射線上一動點,連接,以為一邊且在的右側(cè)作正方形.
解答下列問題:
如果,.
①當(dāng)點在線段上時(與點不重合),如圖2,線段、之間的位置關(guān)系為________,數(shù)量關(guān)系為________.
②當(dāng)點在線段的延長線上時,如圖3,①中的結(jié)論是否仍然成立,為什么?
如果,,點在線段上運動.試探究:當(dāng)滿足一個什么條件時,(點、重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)
【答案】(1)垂直,相等; 當(dāng)時,,理由見解析.
【解析】
(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2)過點A作AG⊥AC交CB或CB的延長線于點G,于是得到∠GAC=90°,可推出∠ACB=∠AGC,證得AC=AG,根據(jù)(1)的結(jié)論于是得到結(jié)果.
(1)①正方形ADEF中,AD=AF.
∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF.在△DAB與△FAC中,,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.
故答案為:垂直、相等;
②成立,理由如下:
∵∠FAD=∠BAC=90°
∴∠BAD=∠CAF
在△BAD與△CAF中,∵,∴△BAD≌△CAF,∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°,∴CF⊥BD;
(2)當(dāng)∠ACB=45°時,CF⊥BD(如圖).
理由:過點A作AG⊥AC交CB的延長線于點G,則∠GAC=90°.
∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG.在△GAD與△CAF中,,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△ABC和△AEF中,點E在BC邊上,AE=AB,AC=AF,∠CAF=∠BAE,EF與AC交于點G.
(1)求證:EF=BC;
(2)若∠ABC=65°.∠ACB=28°,求∠FGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,將繞點順時針旋轉(zhuǎn)角得,交于點,分別交、于、兩點.
如圖,觀察并猜想:圖中在不連接其它線段的情況下,共有多少對全等三角形(不包含)?將它們?nèi)繉懗鰜,并且選一組全等三角形進行證明;
如圖,當(dāng)時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠修建了甲、乙兩個水池,最大蓄水量都是1200立方米,如果甲池有水480立方米,乙池蓄滿水,甲池每小時進水80立方米,乙池每小時放水100立方米.
(1)分別寫出甲、乙兩池的水量與時間的函數(shù)解析式;
(2)甲、乙兩池同時進水、放水,經(jīng)過幾小時兩個水池內(nèi)的水一樣多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°得到AB′C′D′,如果AB=1,點C與C′的距離為( 。
A. B. ﹣ C. 1 D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)如圖①所示是一個半徑為,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點出發(fā)沿圓柱的側(cè)面爬行一周到達B點,求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形則螞蟻爬行的最短路程即為線段的長)
(2)如圖②所示是一個底面半徑為,母線長為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周后回到A點,求螞蟻爬行的最短路程.
(3)如圖③所示,在②的條件下,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周到達母線PA上的一點,求螞蟻爬行的最短路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象軸上方的部分沿軸翻折到軸下方,圖象的其余部分保持不變,翻折后的圖象與原圖象軸下方的部分組成一個“”形狀的新圖象,若直線與該新圖象有兩個公共點,則的取值范圍為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com