【題目】在平面直角坐標(biāo)系中,將某點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這個點(diǎn)的“互換點(diǎn)”,如(-3,5)與(5,-3)是一對“互換點(diǎn)”.
(1)以O為圓心,半徑為5的圓上有無數(shù)對“互換點(diǎn)”,請寫出一對符合條件的“互換點(diǎn)”;
(2)點(diǎn)M,N是一對“互換點(diǎn)”,點(diǎn)M的坐標(biāo)為(m,n),且(m>n),⊙P經(jīng)過點(diǎn)M,N.
①點(diǎn)M的坐標(biāo)為(4,0),求圓心P所在直線的表達(dá)式;
②⊙P的半徑為5,求m-n的取值范圍.
【答案】(1)答案不唯一,如:(4,3),(3,4);(2)①y=x;②0<m-n≤.
【解析】試題分析:根據(jù)“互換點(diǎn)”的定義,結(jié)合圖形寫出符合題意的點(diǎn)即可;(2)①因點(diǎn)M的坐標(biāo)為(4,0),根據(jù)“互換點(diǎn)”的定義,點(diǎn)N的坐標(biāo)為(0,4),由圓的對稱性可知圓心P在直線OA上,從而可求圓心P所在直線的表達(dá)式;②由MN為⊙P直徑時,求出m-n的最大值,由點(diǎn)M,N重合時,求出m-n的最小值.
解:(1)答案不唯一,如:(4,3),(3,4);
(2)①連結(jié)MN,∵OM=ON=4,∴Rt△OMN是等腰直角三角形.
過O作OA⊥MN于點(diǎn)A,∴點(diǎn)M,N關(guān)于直線OA對稱.
由圓的對稱性可知,圓心P在直線OA上,∴圓心P所在直線的表達(dá)式為y=x.
②當(dāng)MN為⊙P直徑時,由等腰直角三角形性質(zhì),可知m-n=;
當(dāng)點(diǎn)M,N重合時,即點(diǎn)M,N橫縱坐標(biāo)相等,所以m-n=0;
∴m-n的取值范圍是0<m-n≤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,點(diǎn)O落在BC邊上的點(diǎn)E處.則直線DE的解析式為( 。
A.y=x+5B.y=x+5C.y=x+5D.y=x+5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】纜車,不僅提高了景點(diǎn)接待游客的能力,而且解決了登山困難者的難題.如圖,當(dāng)纜車經(jīng)過點(diǎn)A到達(dá)點(diǎn)B時,它走過了700米.由B到達(dá)山頂D時,它又走過了700米.已知線路AB與水平線的夾角為16°,線路BD與水平線的夾角β為20°,點(diǎn)A的海拔是126米.求山頂D的海拔高度(畫出設(shè)計圖,寫出解題思路即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)O是AB邊上一點(diǎn),以O為圓心作⊙O且經(jīng)過A,D兩點(diǎn),交AB于點(diǎn)E.
(1)求證:BC是⊙O的切線;
(2)AC=2,AB=6,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)在第__________次記錄時距地最遠(yuǎn);
(2)求收工時距地多遠(yuǎn)?
(3)若每千米耗油升,每升汽油需元,問檢修小組工作一天需汽油費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一組相同規(guī)格的飯碗,測得一只碗高度為4.5cm,兩只飯碗整齊疊放在桌面上的高度為6.5cm,三只飯碗整齊疊放在桌面上的高度為8.5cm.根據(jù)以上信息回答下列問題:
(1)若飯碗數(shù)為個,用含的代數(shù)式表示個飯碗整齊疊放在桌面上的高度;
(2)當(dāng)疊放飯碗數(shù)為9個時,求這疊飯碗的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:△OAB.
求作:⊙O,使⊙O與△OAB的邊AB相切.
小明的作法如下:
如圖,①取線段OB的中點(diǎn)M;以M為圓心,MO為半徑作⊙M,與邊AB交于點(diǎn)C;
②以O為圓心,OC為半徑作⊙O;
所以,⊙O就是所求作的圓.
請回答:這樣做的依據(jù)是__________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ADC=90°,點(diǎn)E是BC邊上一動點(diǎn),聯(lián)結(jié)AE,過點(diǎn)E作AE的垂線交直線CD于點(diǎn)F.已知AD=4cm,CD=2cm,BC=5cm,設(shè)BE的長為x cm,CF的長為y cm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.下面是小東的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
(說明:補(bǔ)全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))
(2)建立直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題: 當(dāng)BE=CF時,BE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com