【題目】為了測(cè)量豎直旗桿AB的高度,某綜合實(shí)踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置一個(gè)平面鏡E,使得B,E,D在同一水平線(xiàn)上(如圖所示).該小組在標(biāo)桿的F處通過(guò)平面鏡E恰好觀測(cè)到旗桿頂A(此時(shí)∠AEB=∠FED),在F處測(cè)得旗桿頂A的仰角為45°,平面鏡E的俯角為67°,測(cè)得FD=2.4米.求旗桿AB的高度約為多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈)
【答案】旗桿AB的高度約為6米.
【解析】
作FG⊥AB于G,設(shè)AB為x米,根據(jù)正切的定義求出DE、BE,根據(jù)圖形列式計(jì)算,得到答案.
解:作FG⊥AB于G,
設(shè)AB為x米,
由題意得,四邊形FDBG為矩形,
∴BG=DF=2.4,FG=BD,
∵FG∥BD,
∴∠FED=∠GFE=67°,
在Rt△EDF中,tan∠FED=,
,
在Rt△AFG中,∠AFG=45°,
∴FG=AG=x﹣2.4,
在Rt△AEB中,tan∠AEB=,即,
由題意得,x﹣2.4=1+x
解得,x≈6,
答:旗桿AB的高度約為6米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象與正半軸交于點(diǎn),與軸分別交于點(diǎn).若過(guò)點(diǎn)作平行于軸的直線(xiàn)交拋物線(xiàn)于點(diǎn).
(1)點(diǎn)的橫坐標(biāo)為______;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為點(diǎn),連接與交于點(diǎn),當(dāng)時(shí),求的取值范圍;
(3)當(dāng)時(shí),該二次函數(shù)有最大值3,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度為________米.(精確到0.1米,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解題過(guò)程:
例:若代數(shù)式,求a的取值.
解:原式=,
當(dāng)a<2時(shí),原式=(2-a)+(4-a)=6-2a=2,解得a=2(舍去);
當(dāng)2≤a<4時(shí),原式=(a-2)+(4-a)=2=2,等式恒成立;
當(dāng)a≥4時(shí),原式=(a-2)+(a-4)=2a-6=2,解得a=4;
所以,a的取值范圍是2≤a≤4.
上述解題過(guò)程主要運(yùn)用了分類(lèi)討論的方法,請(qǐng)你根據(jù)上述理解,解答下列問(wèn)題:
(1)當(dāng)3≤a≤7時(shí),化簡(jiǎn):=_________;
(2)請(qǐng)直接寫(xiě)出滿(mǎn)足=5的a的取值范圍__________;
(3)若=6,求a的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線(xiàn)與軸交于點(diǎn),(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)為拋物線(xiàn)的頂點(diǎn),點(diǎn)的縱坐標(biāo)為-2.
(1)如圖1,求此拋物線(xiàn)的解析式;
(2)如圖2,點(diǎn)是第一象限拋物線(xiàn)上一點(diǎn),連接,過(guò)點(diǎn)作軸交于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)為,求與的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(3)如圖3,在(2)的條件下,點(diǎn)在上,且,點(diǎn)的橫坐標(biāo)大于3,連接,,,且,過(guò)點(diǎn)作交于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,.點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為同時(shí),點(diǎn)從點(diǎn)出發(fā),沿方向勻速運(yùn)動(dòng),速度為.過(guò)點(diǎn)作交于點(diǎn),連接,交于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為.解答下列問(wèn)題:
(1)當(dāng)為何值時(shí),?
(2)設(shè)五邊形的面積為, 求與的函數(shù)關(guān)系式;
(3)連接.是否存在某一時(shí)刻, 使點(diǎn)在的垂直平分線(xiàn)上,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人駕車(chē)分別從A、B兩地相向而行,乙出發(fā)半小時(shí)后甲出發(fā),甲出發(fā)1.5小時(shí)后汽車(chē)出現(xiàn)故障,于是甲停下修車(chē),半小時(shí)后甲修好后繼續(xù)沿原路按原速與乙相遇,相遇后甲隨即調(diào)頭以原速返回A地,乙也繼續(xù)向A地行駛,甲、乙兩車(chē)之間的距離(y/千米)與甲駕車(chē)時(shí)間x(小時(shí))之間的關(guān)系如圖所示,當(dāng)乙到達(dá)A地時(shí),甲距離B地_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于二次函數(shù)y=x2+2x+3的圖象有以下說(shuō)法:其中正確的個(gè)數(shù)是( )
①它開(kāi)口向下;②它的對(duì)稱(chēng)軸是過(guò)點(diǎn)(﹣1,3)且平行于y軸的直線(xiàn);③它與x軸沒(méi)有公共點(diǎn);④它與y軸的交點(diǎn)坐標(biāo)為(3,0).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與y軸交于C(0,8),且與反比例函數(shù)y=(x>0)的圖象在第一象限內(nèi)交于A(3,a),B(1,b)兩點(diǎn).
⑴求△AOC的面積;
⑵若=4,求反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com