【題目】已知:在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)為拋物線的頂點(diǎn),點(diǎn)的縱坐標(biāo)為-2.
(1)如圖1,求此拋物線的解析式;
(2)如圖2,點(diǎn)是第一象限拋物線上一點(diǎn),連接,過點(diǎn)作軸交于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的長為,求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)如圖3,在(2)的條件下,點(diǎn)在上,且,點(diǎn)的橫坐標(biāo)大于3,連接,,,且,過點(diǎn)作交于點(diǎn),若,求點(diǎn)的坐標(biāo).
【答案】(1);(2);(3)
【解析】
(1)將拋物線解析式化為頂點(diǎn)式可得y=a(x-1)2-4a,則C點(diǎn)為(1,-4a),再由-4a=-2即可求a的值,進(jìn)而確定函數(shù)解析式;
(2)由已知分別求出點(diǎn)P和點(diǎn)A的坐標(biāo),可得AP的直線解析式,求出D點(diǎn)坐標(biāo)則可求CD;
(3)設(shè)CD與x軸的交點(diǎn)為H,連接BE,由三角形中位線的性質(zhì)可求BE=2(t-3)=2t-6;過點(diǎn)F作FN⊥BE于點(diǎn)N,過點(diǎn)P作PM⊥BE交BE的延長線于點(diǎn)M,可證明Rt△PME≌Rt△ENF(HL),從而推導(dǎo)出∠EPF=∠EFP=45°;過點(diǎn)C作CK⊥CG交PA的延長線于點(diǎn)K,連接AC、BC,能夠進(jìn)一步證明△ACK≌△BCG(SAS),得到∠KGB=90°;令AG=8m,則CG=BG=6m,過點(diǎn)G作GL⊥x軸于點(diǎn)L,在Rt△ABG中,AG=10m=4,求出m值,利用等積法可求G點(diǎn)的坐標(biāo),再將G點(diǎn)坐標(biāo)代入,求出t,即可求出點(diǎn)P坐標(biāo).
解:(1),
頂點(diǎn)的坐標(biāo)為,
點(diǎn)的縱坐標(biāo)為,
,
,
;
(2)點(diǎn)的橫坐標(biāo)為,
,
與軸的交點(diǎn)為,,
設(shè)的直線解析式為,
則有,
解得,
,
軸交于點(diǎn),
,
,
;
(3)如圖:設(shè)與軸的交點(diǎn)為,連接,
垂直平分,,
,,
軸,
,
過點(diǎn)作于點(diǎn),過點(diǎn)作交的延長線于點(diǎn),
,
,
,
,
,
,
,
,
過點(diǎn)作交的延長線于點(diǎn),連接、,
,
,
,
,,
,
,,
,
,
,,
,
令,則,
,,
,
,
過點(diǎn)作軸于點(diǎn),
在中,,
,
,
,
,
,
,
,,
的解析式為,
,
,
,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第16題,4分)如圖,在平面直角坐標(biāo)系xOy中,已知直線y=kx(k>0)分別交反比例函數(shù)和在第一象限的圖象于點(diǎn)A,B,過點(diǎn)B作 BD⊥x軸于點(diǎn)D,交的圖象于點(diǎn)C,連結(jié)AC.若△ABC是等腰三角形,則k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩城相距600千米,甲、乙兩車同時(shí)從A城出發(fā)駛向B城,甲車到達(dá)B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時(shí)間 x(小時(shí))之間的函數(shù)圖象.
(1)求甲車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)當(dāng)它們行駛了7小時(shí)時(shí),兩車相遇,求乙車的速度及乙車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)當(dāng)兩車相距100千米時(shí),求甲車行駛的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在直角中,,點(diǎn)在邊上,且如果將沿所在的直線翻折,點(diǎn)恰好落在邊上的點(diǎn)處,點(diǎn)為邊上的一個(gè)動點(diǎn),聯(lián)結(jié),以圓心,為半徑作⊙,交線段于點(diǎn)和點(diǎn),作交⊙于點(diǎn),交線段于點(diǎn).
(1)求點(diǎn)到點(diǎn)和直線的距離
(2)如果點(diǎn)平分劣弧,求此時(shí)線段的長度
(3)如果為等腰三角形,以為圓心的⊙與此時(shí)的⊙相切,求⊙的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量豎直旗桿AB的高度,某綜合實(shí)踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置一個(gè)平面鏡E,使得B,E,D在同一水平線上(如圖所示).該小組在標(biāo)桿的F處通過平面鏡E恰好觀測到旗桿頂A(此時(shí)∠AEB=∠FED),在F處測得旗桿頂A的仰角為45°,平面鏡E的俯角為67°,測得FD=2.4米.求旗桿AB的高度約為多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金佛山是巴蜀四大名山之一游客上金佛山有兩種方式:一種是從西坡上山,如圖,先從A沿登山步道走到點(diǎn)B,再沿索道乘坐纜車到點(diǎn)C;另一種是從北坡景區(qū)沿著盤山公路開車上山到點(diǎn)C.已知在點(diǎn)A處觀測點(diǎn)C,得仰角∠CAD=37°,且A、B的水平距離AE=1000米,索道BC的坡度i=1:,長度為2600米,CD⊥AD于點(diǎn)D,BF⊥CD于點(diǎn)F則BE的高度為(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°=0.75,=1.73)( 。
A.2436.8米B.2249.6米C.1036.8米D.1136.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)和.下列結(jié)論:①;②;③當(dāng)時(shí),拋物線與軸必有一個(gè)交點(diǎn)在點(diǎn)的右側(cè);④拋物線的對稱軸為.
其中結(jié)論正確的個(gè)數(shù)有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com