【題目】已知一次函數(shù),反比例函數(shù)(a,b,k是常數(shù),且),若其中一部分x,y的對(duì)應(yīng)值如表:則不等式的解集是_________.
x | 1 | 2 | 3 | 4 | ||||
3 | 2 | 1 | 0 | |||||
2 | 3 | 6 |
【答案】3<x<0或x>2
【解析】
根據(jù)表格中數(shù)據(jù),可以得出兩個(gè)函數(shù)的圖象的交點(diǎn)坐標(biāo),從而確定函數(shù)圖象所在的位置,根據(jù)函數(shù)的增減性和圖象,可直接得出一次函數(shù)的值小于反比例函數(shù)值時(shí)自變量的取值范圍.
解:由表格中數(shù)據(jù)得,一次函數(shù)y=ax+b與反比例函數(shù)都過(3,2),(2,3),
因此反比例函數(shù)的圖象位于二、四象限,一次函數(shù)的圖象過二、四象限,
函數(shù)圖像大致如圖,由圖象可知,
當(dāng)3<x<0或x>2時(shí),一次函數(shù)的值小于反比例函數(shù)的值,
即不等式的解集是3<x<0或x>2,
故答案為:3<x<0或x>2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓的半徑OC=2,線段BC與CD是半圓的兩條弦,BC=CD,延長CD交直徑BA的延長線于點(diǎn)E,若AE=2,則弦BD的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,拋物線的對(duì)稱軸交拋物線于點(diǎn),在軸上是否存在點(diǎn),使得的周長最小?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如圖2,點(diǎn)為直線上方拋物線上的動(dòng)點(diǎn),于點(diǎn),求線段的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O與AC交于點(diǎn)D,過D作DF⊥BC, 交AB的延長線于E,垂足為F.
(1)求證:直線DE是⊙O的切線;
(2)當(dāng)AB=5,AC=8時(shí),求cosE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是反比例函數(shù)在第一象限圖像上一點(diǎn),連接,過作軸,截取(在右側(cè)),連接,交反比例函數(shù)的圖像于點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)的坐標(biāo)及所在直線解析式;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)y1=ax2+bx+a﹣5(a,b為常數(shù),a≠0),且2a+b=3.
(1)若該二次函數(shù)的圖象過點(diǎn)(﹣1,4),求該二次函數(shù)的表達(dá)式;
(2)y1的圖象始終經(jīng)過一個(gè)定點(diǎn),若一次函數(shù)y2=kx+b(k為常數(shù),k≠0)的圖象也經(jīng)過這個(gè)定點(diǎn),探究實(shí)數(shù)k,a滿足的關(guān)系式;
(3)已知點(diǎn)P(x0,m)和Q(1,n)都在函數(shù)y1的圖象上,若x0<1,且m>n,求x0的取值范圍(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線經(jīng)過點(diǎn),對(duì)稱軸是直線,頂點(diǎn)為點(diǎn),拋物線與軸交于點(diǎn).
(1)求拋物線的表達(dá)式和點(diǎn)的坐標(biāo);
(2)將上述拋物線向下平移個(gè)單位,平移后的拋物線與軸正半軸交于點(diǎn),求的面積;
(3)如果點(diǎn)在原拋物線上,且在對(duì)稱軸的右側(cè),聯(lián)結(jié)交線段于點(diǎn),,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論,正確的有( )個(gè)
① ② ③ ④
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初級(jí)中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生年齡情況,隨機(jī)調(diào)查了本校部分學(xué)生的年齡,根據(jù)所調(diào)查的學(xué)生的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的學(xué)生人數(shù)為_______,圖①中 的值為 ;
(2)求統(tǒng)計(jì)的這組學(xué)生年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com