【題目】如圖,在正方形ABCD中,AF=BE,AE與DF相交于于點(diǎn)O.
(1)求證:△DAF≌△ABE;
(2)求∠AOD的度數(shù);
(3)若AO=4,DF=10,求的值.
【答案】(1)見解析;(2);(3)tan∠ADF的值為.
【解析】
(1)利用正方形的性質(zhì)得出AD=AB,∠DAB=∠ABC=90°,即可得出結(jié)論;
(2)利用(1)的結(jié)論得出∠ADF=∠BAE,進(jìn)而求出∠ADF+∠DAO=90°,最后用三角形的內(nèi)角和定理即可得出結(jié)論.
(3)根據(jù)(2)得到AO2=OF·OD,再設(shè)OF=x,DO=10-x,求出x即可解答
(1)在正方形ABCD中,DA=AB,,
又AF=BE
≌ (SAS)
(2)由(1)得 ≌ ,
ADF=BAE,
又 BAE+DAO=,ADF+DAO=
(3)由(2)得∠AOD=900 ∴△AOF∽△DOA ∴AO2=OF·OD
設(shè)OF=x,DO=10-x ∴x(10-x)=16 解得x=2或x=8(舍去)
∴tan∠ADF=
∴tan∠ADF的值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動,當(dāng)一個點(diǎn)到達(dá)點(diǎn)C時,另一個點(diǎn)也隨之停止.設(shè)運(yùn)動時間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關(guān)系的圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(diǎn),點(diǎn)F在邊BC的延長線上,且,連接DE,DF,EF. FH平分交BD于點(diǎn)H.
(1)求證:;
(2)求證::
(3)過點(diǎn)H作于點(diǎn)M,用等式表示線段AB,HM與EF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加射擊比賽,10次射擊的成績?nèi)绫恚?/span>
若小明再射擊2次,分別命中7環(huán)、9環(huán),與前10次相比,小明12次射擊的成績( 。
A. 平均數(shù)變大,方差不變B. 平均數(shù)不變,方差不變
C. 平均數(shù)不變,方差變大D. 平均數(shù)不變,方差變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把3顆算珠放在計(jì)數(shù)器的3根插棒上構(gòu)成一個數(shù)字,例如,如圖擺放的算珠表示數(shù)300.現(xiàn)將3顆算珠任意擺放在這3根插棒上.
(1)若構(gòu)成的數(shù)是兩位數(shù),則十位數(shù)字為1的概率為 ;
(2)求構(gòu)成的數(shù)是三位數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境) 已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
(數(shù)學(xué)模型)
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2( )(x>0)
(探索研究)
我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=(x>0)的圖象和性質(zhì).
(1)①填寫下表,畫出函數(shù)的圖象;
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=(x>0)的最小值.
解決問題:(2)用上述方法解決“問題情境”中的問題,直接寫出答案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)和.
求一次函數(shù)和反比例函數(shù)的表達(dá)式;
請直接寫出時,x的取值范圍;
過點(diǎn)B作軸,于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com