【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設(shè)了“3D”打印、數(shù)學編程、智能機器人、陶藝制作”四門創(chuàng)客課程,為了解學生對這四門創(chuàng)客課程的喜愛情況,數(shù)學興趣小組對全校學生進行了隨機問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結(jié)果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計圖表.
圖1
創(chuàng)客課程 | 頻數(shù) | 頻率 |
A | 36 | 0.45 |
B | 0.25 | |
C | 16 | b |
D | 8 | |
合計 | a | 1 |
最受歡理的創(chuàng)客課程詞查問卷
你好!這是一份關(guān)于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(只能選擇一個)你最喜歡的課程選項在其后空格內(nèi)打“√“,非常感謝你的合作.
選項 | 創(chuàng)客課程 | |
A | “3D”打印 | |
B | 數(shù)學編程 | |
C | 智能機器人 | |
D | 陶藝制作 |
請根據(jù)圖表中提供的值息回答下列問題:
(1)統(tǒng)計表中的a= .b= ;
(2)“D”對應(yīng)扇形的圓心角為 ;
(3)根據(jù)調(diào)查結(jié)果,請你估計該校2000名學生中最喜歡“數(shù)學編程”創(chuàng)客課程的人數(shù).
【答案】(1)80,0.20;(2)36°;(3)500.
【解析】
(1)根據(jù)頻數(shù)與頻率的關(guān)系列式計算即可即可;
(2)根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進行計算即可;
(3)根據(jù)最喜歡“數(shù)學編程”創(chuàng)客課程的人數(shù)所占的百分比,即可得到人數(shù).
解:(1)a=36÷0.45=80,
b=16÷80=0.20,
故答案為:80,0.20;
(2)“D”對應(yīng)扇形的圓心角的度數(shù)為:×360°=36°,
故答案為:36°;
(3)估計該校2000名學生中最喜歡“數(shù)學編程”創(chuàng)客課程的人數(shù)為:2000×0.25=500(人).
故答案為:(1)80,0.20;(2)36°;(3)500.
科目:初中數(shù)學 來源: 題型:
【題目】一次安全知識測驗中,學生得分均為整數(shù),滿分10分,成績達到9分為優(yōu)秀,這次測驗中甲、乙兩組學生人數(shù)相同,成績?nèi)缦聝蓚統(tǒng)計圖:
(1)在乙組學生成績統(tǒng)計圖中,8分所在的扇形的圓心角為 度;
(2)請補充完整下面的成績統(tǒng)計分析表:
平均分 | 方差 | 眾數(shù) | 中位數(shù) | 優(yōu)秀率 | |
甲組 | 7 | 1.8 | 7 | 7 | 20% |
乙組 | 10% |
(3)甲組學生說他們的優(yōu)秀率高于乙組,所以他們的成績好于乙組,但乙組學生不同意甲組學生的說法,認為他們組的成績要好于甲組,請你給出兩條支持乙組學生觀點的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,平分,⊥,,.
【1】求的度數(shù)
【2】如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求的度數(shù);
【3】如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.(此題9分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形…依次進行下去,則第2014個內(nèi)接正方形的邊長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC和△ADE是有公共頂點的三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.
(1) ①如圖1,∠ADE=∠ABC=45°,求證:∠ABD=∠ACE.
②如圖2,∠ADE=∠ABC=30°,①中的結(jié)論是否成立?請說明理由.
(2)在(1) ①的條件下,AB=6,AD=4,若把△ADE繞點A旋轉(zhuǎn),當∠EAC=90°時,畫圖并求PB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax-2x+c(a≠0)與x軸,y軸分別交于點A,B,C三點,已知點(-2,0),C(0,-8),點D是拋物線的頂點.
(1)求拋物線的解析式及頂點D的坐標;
(2)如圖,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EB直線EP折疊,使點B的對應(yīng)點B'落在拋物線的對稱軸上,求點P的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com