【題目】如圖,在△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,⊙O的切線DE交AC于點(diǎn)E.
(1)求證:E是AC中點(diǎn);
(2)若AB=10,BC=6,連接CD,OE,交點(diǎn)為F,求OF的長(zhǎng).
【答案】(1)證明見解析;(2)OF=1.8.
【解析】
(1)連接CD,根據(jù)切線的性質(zhì),就可以證出∠A=∠ADE,從而證明AE=CE;
(2)求出OD,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE,根據(jù)勾股定理求出OE,根據(jù)三角形面積公式求DF,根據(jù)勾股定理求出OF即可.
(1)連接CD,
∵∠ACB=90°,BC為⊙O直徑,
∴ED為⊙O切線,且∠ADC=90°;
∵ED切⊙O于點(diǎn)D,
∴EC=ED,
∴∠ECD=∠EDC;
∵∠A+∠ECD=∠ADE+∠EDC=90°,
∴∠A=∠ADE,
∴AE=ED,
∴AE=CE,
即E為AC的中點(diǎn);
∴BE=CE;
(2)連接OD,
∵∠ACB=90°,
∴AC為⊙O的切線,
∵DE是⊙O的切線,
∴EO平分∠CED,
∴OE⊥CD,F為CD的中點(diǎn),
∵點(diǎn)E、O分別為AC、BC的中點(diǎn),
∴OE=AB==5,
在Rt△ACB中,∠ACB=90°,AB=10,BC=6,由勾股定理得:AC=8,
∵在Rt△ADC中,E為AC的中點(diǎn),
∴DE=AC==4,
在Rt△EDO中,OD=BC==3,DE=4,由勾股定理得:OE=5,
由三角形的面積公式得:S△EDO=,
即4×3=5×DF,
解得:DF=2.4,
在Rt△DFO中,由勾股定理得:OF===1.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,P為上一點(diǎn),連接PD、PC.
(1)∠CPD=______°.
(2)若DC=4,CP=2,求DP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過A(1,0)、B(﹣3,0),C(0,﹣3)三點(diǎn),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)P(m,n)是線段AD上的動(dòng)點(diǎn),過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q.
(1)求直線AD及拋物線的解析式;
(2)求線段PQ的長(zhǎng)度l與m的關(guān)系式,m為何值時(shí),PQ最長(zhǎng)?
(3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P、Q、D、R為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,的平分線交于點(diǎn)E,交的延長(zhǎng)線于F,以為鄰邊作平行四邊形。
(1)證明平行四邊形是菱形;
(2)若,連結(jié),①求證:;②求的度數(shù);
(3)若,,,M是的中點(diǎn),求的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:(保留作圖痕跡,不寫做法)
(1)已知:如圖,四邊形ABCD與四邊形EFGH成中心對(duì)稱,試畫出它們的對(duì)稱中心O。
(2)考古學(xué)家在考古過程中發(fā)現(xiàn)一個(gè)圓盤,但是因?yàn)闅v史悠久,已經(jīng)有一部分缺失,如圖所示.現(xiàn)希望復(fù)原圓盤,需要先找到圓盤的圓心,才能繼續(xù)完成后續(xù)修復(fù)工作.請(qǐng)利用直尺(無刻度)和圓規(guī),在圖中找出圓心O.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長(zhǎng)為6的等邊三角形,以為直徑畫半圓(如圖),則陰影部分的面積是_________(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,在建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為.
(1)將向左平移3個(gè)單位得到,畫出;
(2)在第三象限內(nèi),以為位似中心,將放大到原大的2倍,畫出放大后對(duì)應(yīng)的;
(3)寫出的坐標(biāo)______,的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=2x﹣6與雙曲線(k≠0)的一個(gè)交點(diǎn)為A(m,2),與x軸交于點(diǎn)B,與y軸交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)若點(diǎn)P在x軸上,且△APC的面積為16,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,點(diǎn)P是BC邊上一點(diǎn),連接AP交對(duì)角線BD于點(diǎn)E,.作線段AP的中垂線MN分別交線段DC,DB,AP,AB于點(diǎn)M,G,F,N.
(1)求證:;
(2)若,求.
(3)如圖2,在(2)的條件下,連接CF,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com