【題目】如圖1,已知拋物線;C1:y=﹣(x+2)(x﹣m)(m>0)與x軸交于點B、C(點B在點C的左側(cè)),與y軸交于點E.
(1)求點B、點C的坐標(biāo);
(2)當(dāng)△BCE的面積為6時,若點G的坐標(biāo)為(0,b),在拋物線C1的對稱軸上是否存在點H,使得△BGH的周長最小,若存在,則求點H的坐標(biāo)(用含b的式子表示);若不存在,則請說明理由;
(3)在第四象限內(nèi),拋物線C1上是否存在點F,使得以點B、C、F為頂點的三角形與△BCE相似?若存在,求m的值;若不存在,請說明理由.
【答案】(1)點B、C的坐標(biāo)分別為:(﹣2,0)、(m,0);(2)存在,點H(1,b);(3)存在,m=2
【解析】
(1) ,令y=0,則x=﹣2或m,即可求解;
(2)點B關(guān)于函數(shù)對稱軸的對稱點為點C(m,0),連接CE交對稱軸于點H,則點H為所求,即可求解;
(3)分△BEC∽△BCF、△BEC∽△FCB兩種情況,分別求解即可.
解:(1),令y=0,則x=﹣2或m,
故點B、C的坐標(biāo)分別為:(﹣2,0)、(m,0);
(2)存在,理由:
,令x=0,則y=2,故點E(0,2),
△BCE的面積為: ,解得:m=4,
則拋物線的對稱軸為: ,
點B關(guān)于函數(shù)對稱軸的對稱點為點C(m,0),連接CE交對稱軸于點H,則點H為所求,
將點C、E的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:
直線CE的表達(dá)式為: ,當(dāng)x=1時, ,
故點H(1,b);
(3)∵OE=OB=2,故∠EBO=45°,
過點F作FT⊥x軸于點F;
①當(dāng)△BEC∽△BCF時,
則BC2=BEBF,∠FBO=EBO=45°,
則直線BF的函數(shù)表達(dá)式為:y=﹣x﹣2,故點F(x,﹣x﹣2);
將點F的坐標(biāo)代入拋物線表達(dá)式得:
解得:x=﹣2(舍去)或2m,
故點F(2m,﹣2m﹣2),
則
∵BC2=BEBF,
則 解得: (舍去負(fù)值),
故
②當(dāng)△BEC∽△FCB時,
則BC2=BFEC,∠CBF=∠ECO,
則△BFT∽△COE,
則 ,則點
將點F的坐標(biāo)代入拋物線表達(dá)式得:
解得:x=﹣2(舍去)或m+2;
則點
BC2=BFEC,則
化簡得:m3+4m2+4m=m3+4m2+4m+16,
此方程無解;
綜上,m=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點C、D為監(jiān)測點,已知點C、D、B在同一直線上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的長(結(jié)果精確到1米)
(2)如果道路AB的限速為60千米/時,一輛汽車通過AB段的時間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2020年中考,某中學(xué)對全校九年級學(xué)生進(jìn)行了一次數(shù)學(xué)期末模擬考試,并隨機抽取了部分學(xué)生的測試成績作為樣本進(jìn)行分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,一共調(diào)查了多少名學(xué)生;
(2)將條形統(tǒng)計圖補充完整;
(3)若該中學(xué)九年級共有860人參加了這次數(shù)學(xué)考試,估計該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,按以下步驟作圖:①以點A為圓心,AB的長為半徑作弧,交AD于點F;②分別以點F,B為圓心大于FB的長為半徑作弧,兩弧在∠DAB內(nèi)交于點G;③作射線AG,交邊BC于點E,連接EF.若AB=5,BF=8,則四邊形ABEF的面積為( )
A.12B.20C.24D.48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點坐標(biāo)為(1,2),那么下列結(jié)論中:①abc>0;②2a+b═0;③b2﹣4ac>0;④若關(guān)于x的一元二次方程ax2+bx+c﹣m=0沒有實數(shù)根,則m>2;⑤方程|ax2+bx+c|=1有四個根,則這四個根的和為4.正確的個數(shù)為( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,探究函數(shù)圖象和性質(zhì)過程如下:
(1)下表是y與x的幾組值,則解析式中的m= ,表格中的n= ;
x | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | 1 | 3 | 4 | 3 | n | 0 | … |
(2)在平面直角坐標(biāo)系中描出表格中各點,并畫出函數(shù)圖象:
(3)若A(x1,y1)、B(x2,y2)、C(x3,y3)為函數(shù)圖象上的三個點,其中x2+x3>4且﹣1<x1<0<x2<2<x3<4,則y1、y2、y3之間的大小關(guān)系是 ;
(4)若直線y=k+1與該函數(shù)圖象有且僅有一個交點,則k的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點的橫坐標(biāo)為2,將點向右平移2個單位,再向下平移2個單位得到點,且、兩點均在雙曲線上.
(1)求反比例函數(shù)的解析式.(2)若直線于反比例函數(shù)的另一交點為,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
操作發(fā)現(xiàn):如圖1,在中,,以點為中心,把順時針旋轉(zhuǎn),得到;再以點為中心,把逆時針旋轉(zhuǎn),得到.連接.則與的位置關(guān)系為平行;
探究證明:如圖2,當(dāng)是銳角三角形,時,將按照(1)中的方式,以點為中心,把順時針旋轉(zhuǎn),得到;再以點為中心,把逆時針旋轉(zhuǎn),得到.連接,
①探究與的位置關(guān)系,寫出你的探究結(jié)論,并加以證明;
②探究與的位置關(guān)系,寫出你的探究結(jié)論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】木工師傅可以用角尺測量并計算出圓的半徑r.用角尺的較短邊緊靠⊙O,角尺的頂點B(∠B=90°),并使較長邊與⊙O相切于點C.
(1)如圖,AB<r,較短邊AB=8cm,讀得BC長為12cm,則該圓的半徑r為多少?
(2)如果AB=8cm,假設(shè)角尺的邊BC足夠長,若讀得BC長為acm,則用含a的代數(shù)式表示r為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com