【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B(5,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為M(2,-9),連接BM,點(diǎn)P為線段BM上的一個動點(diǎn).
(1)求二次函數(shù)的解析式.
(2)過點(diǎn)P作x軸的垂線,垂足為點(diǎn)Q,求四邊形ACPQ面積的最大值.
(3)是否存在點(diǎn)P,使得以P、M、C為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2);(3)存在,,或 或
【解析】
(1)根據(jù)拋物線的頂點(diǎn)為,將化成頂點(diǎn)式,然后將點(diǎn)代入,化簡計(jì)算即可;
(2)求出A,B,C三點(diǎn)的坐標(biāo),可得直線的表達(dá)式為,設(shè)點(diǎn),則,根據(jù)化簡求解即可;
(3)分三種情況討論:當(dāng)時,當(dāng)時,當(dāng)時分別求解即可.
解:(1)拋物線的頂點(diǎn)為,
設(shè)拋物線的表達(dá)式為.
將點(diǎn)代入得,.
解得
二次函數(shù)的表達(dá)式為;
(2)令,得,
.
拋物線的對稱軸為直線,,
.
由,可得直線的表達(dá)式為,
設(shè)點(diǎn),則,
則
.
,,
當(dāng)時,四邊形面積有最大值,最大值為;
(3)存在,由(2)知直線的表達(dá)式為.
設(shè),其中,
由,,可得,
,,;
分情況討論如下:
1. 當(dāng)時,有.
解得(舍),,
此時點(diǎn)的坐標(biāo)為;
2. 當(dāng)時,有.
解得(舍),,
此時點(diǎn)的坐標(biāo)為;
3. 當(dāng)時,有.
解得
此時點(diǎn)的坐標(biāo)為;
綜上所述,當(dāng)是等腰三角形時,點(diǎn)的坐標(biāo)為,或 或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】愛好思考的小明在探究兩條直線的位置關(guān)系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線相互垂直的三角形“中垂三角形”,如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(特例研究)
(1)如圖1,當(dāng)tan∠PAB=1,c=4時,a=b= ;
(歸納證明)
(2)請你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖2證明你的結(jié)論;
(拓展證明)
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF交BE相較于點(diǎn)G,AD=3,AB=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=5cm,BD=8cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動,速度為;同時,點(diǎn)Q從點(diǎn)D出發(fā),沿DA方向勻速運(yùn)動,速度為1cm/s.過點(diǎn)P作PN∥BC分別交BD,CD于點(diǎn)M,N,連接QM,QN.設(shè)運(yùn)動時間為.解答下列問題:
(1)當(dāng)為何值時,點(diǎn)在線段的垂直平分線上?
(2)設(shè)的面積為,求與的函數(shù)關(guān)系式;
(3)在運(yùn)動過程中,是否存在某一時刻,使的面積為菱形面積的,若存在,求出的值;若不存在,請說明理由;
(4)是否存在某一時刻,使為等腰三角形?若存在,請直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在宣傳“民族團(tuán)結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請結(jié)合圖中所給信息,解答下列問題:
(1)本次調(diào)查的學(xué)生共有_____人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名學(xué)生,請估計(jì)選擇“唱歌”的學(xué)生有多少人?
(4)七年一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機(jī)選出兩名同學(xué)參加學(xué)校的器樂隊(duì),請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長為半徑畫弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2020的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,小明同學(xué)想利用所學(xué)的知識測量他家對面某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點(diǎn)P.在地面A處測得點(diǎn)M的仰角為58°、點(diǎn)N的仰角為45°,在B處測得點(diǎn)M的仰角為30°,AB=5米,且A、B、P三點(diǎn)在一直線上.請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60,=1.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生課外閱讀情況,就學(xué)生每周閱讀時間線上隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果整理如下:
閱讀時間人數(shù)統(tǒng)計(jì)表
閱讀時間t(小時) | 人數(shù) | 占人數(shù)百分比 |
0≤t<0.5 | 4 | 20% |
0.5≤t<1 | m | 15% |
1≤t<1.5 | 5 | 25% |
1.5≤t<2 | 6 | n |
2≤t<2.5 | 2 | 10% |
根據(jù)圖表解答下列問題:
(1)此次抽樣調(diào)查中,共抽取了 名學(xué)生;
(2)在閱讀時間人數(shù)統(tǒng)計(jì)表中m= ,n= ;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估計(jì)該校2000名學(xué)生中有多少名學(xué)生每天閱讀時間在2≤t<2.5時間段?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形的邊上存在點(diǎn),使得,我們稱點(diǎn)為矩形的“和諧點(diǎn)
(1)求證: ;
(2)如圖2,矩形的頂點(diǎn)的坐標(biāo)為為坐標(biāo)原點(diǎn),點(diǎn)分別在軸和軸上,在邊上是否存在“和諧點(diǎn)”,如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請說明理由
(3)在(2)中,如果點(diǎn)的坐標(biāo)為,且在上存在“和諧點(diǎn)”求的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于點(diǎn),與軸交于點(diǎn),在軸上有一動點(diǎn),過點(diǎn)作軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),過點(diǎn)作于點(diǎn).
(1)求的值和直線的函數(shù)表達(dá)式;
(2)設(shè)的周長為,的周長為,若,求的值;
(3)如圖2,在(2)條件下,將線段繞點(diǎn)逆時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接、,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com