【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(-1,0)(0,3),下列結(jié)論中錯誤的是( )

A.abc<0
B.9a+3b+c=0
C.a-b=-3
D.4ac﹣b2<0

【答案】B
【解析】圖象開口向下,則a<0,對稱軸在y軸右側(cè),則b>0,與y軸交于正半軸,則c>0,所以abc<0,所以A正確;當(dāng)x=0時,則c=3,當(dāng)x=-1時,a-b+c=0,即a-b+3=0,所以a-b=-3,所以C正確;圖象與x軸有兩個交點(diǎn),則 -4ac>0,即4ac- <0,所以D正確.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1+2+1=4=22,1+2+3+2+1=9=321+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52.根據(jù)上面四式的計算規(guī)律求:1+2+3+…+2014+2015+2016+2015+2014+…+3+2+1=________(寫出某數(shù)的平方即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是以點(diǎn)O為圓心,AB為直徑的半圓上的動點(diǎn)(點(diǎn)C不與點(diǎn)A,B重合),AB=4.設(shè)弦AC的長為x,△ABC的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:線段、

求作:ABC,使, ;

【答案】答案見解析

【解析】試題分析:先畫出與相等的角,再畫出的長,連接,則即為所求三角形.

試題解析:如圖所示:①先畫射線BC,

②以α的頂點(diǎn)為圓心,任意長為半徑畫弧,分別交α的兩邊交于為A′,C

③以相同長度為半徑,B為圓心,畫弧,BC于點(diǎn)F,F為圓心,CA為半徑畫弧,交于點(diǎn)E;

④在BF上取點(diǎn)C,使CB=a,以B為圓心,c為半徑畫圓交BE的延長線于點(diǎn)A,連接AC,

結(jié)論:△ABC即為所求三角形.

型】解答
結(jié)束】
15

【題目】已知:線段 ,求作: ,使,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1

2

32a3b

4+1﹣(0|1|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB為⊙O的直徑AC、AD為⊙O的弦,若AB=2AC= AD,則∠DBC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為△的平分線的交點(diǎn),分別過點(diǎn)、,若°,你能夠求出的度數(shù)嗎?若能請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的高,點(diǎn)EBC上,AE是∠BAC的平分線,BEAE,∠B40°

1)求∠EAD的度數(shù);

2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王購買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

1)用含的代數(shù)式表示地面總面積;

2)已知客廳面積比衛(wèi)生間面積多21平方米,且地面總面積是衛(wèi)生間面積的15.若鋪1平方米地磚的平均費(fèi)用為100元,那么鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊答案