【題目】如圖,已知△ABC與△CDA關(guān)于點(diǎn)O成中心對稱,過點(diǎn)O任作直線EF分別交AD,BC于點(diǎn)E,F,則下則結(jié)論:①點(diǎn)E和點(diǎn)F,點(diǎn)B和點(diǎn)D是關(guān)于中心O的對稱點(diǎn);②直線BD必經(jīng)過點(diǎn)O;③四邊形ABCD是中心對稱圖形;④四邊形DEOC與四邊形BFOA的面積必相等;⑤△AOE與△COF成中心對稱.其中正確的個(gè)數(shù)為 ( )
A. 2 B. 3 C. 4 D. 5
【答案】D
【解析】
由于△ABC與△CDA關(guān)于點(diǎn)O對稱,那么可得到AB=CD、AD=BC,即四邊形ABCD是平行四邊形,由于平行四邊形是中心對稱圖形,且對稱中心是對角線交點(diǎn),可根據(jù)上述特點(diǎn)對各結(jié)論進(jìn)行判斷.
△ABC與△CDA關(guān)于點(diǎn)O對稱,則AB=CD、AD=BC,所以四邊形ABCD是平行四邊形,
因此點(diǎn)O就是ABCD的對稱中心,則有:
(1)點(diǎn)E和點(diǎn)F;B和D是關(guān)于中心O的對稱點(diǎn),正確;
(2)直線BD必經(jīng)過點(diǎn)O,正確;
(3)四邊形ABCD是中心對稱圖形,正確;
(4)四邊形DEOC與四邊形BFOA的面積必相等,正確;
(5)△AOE與△COF成中心對稱,正確;
其中正確的個(gè)數(shù)為5個(gè),
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是ABCD的對角線,∠BAC=∠DAC.
(1)求證:AB=BC;
(2)若AB=2,AC=2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=ax2﹣b的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了慶祝校園藝術(shù)節(jié),準(zhǔn)備購買一批盆花布置校園.已知1盆A種花和2盆B種花一共需13元,2盆A種花和1盆B種花一共需11元.
(1)求1盆A種花和1盒B種花的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種盆花共100盆,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2倍,請求出A種盆花的數(shù)量最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃用元從廠家購進(jìn)臺(tái)新型電子產(chǎn)品,已知該廠家生產(chǎn)甲、乙、丙三種不同型號的電子產(chǎn)品,設(shè)甲、乙型設(shè)備應(yīng)各買入臺(tái),其中每臺(tái)的價(jià)格、銷售獲利如下表:
甲型 | 乙型 | 丙型 | |
價(jià)格(元/臺(tái)) | |||
銷售獲利(元/臺(tái)) |
購買丙型設(shè)備 臺(tái)(用含的代數(shù)式表示) ;
若商場同時(shí)購進(jìn)三種不同型號的電子產(chǎn)品(每種型號至少有一臺(tái)),恰好用了元,則商場有哪幾種購進(jìn)方案?
在第題的基礎(chǔ)上,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種購進(jìn)方案?此時(shí)獲利為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE
證明:∵∠B+∠BCD=180°(已知)
∴AB∥CD( )
∴∠B=∠DCE( )
又∵∠B=∠D(已知 ),
∴___________ (等量代換)
∴ ∥
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ ABC中,∠ ABC、∠ ACB的平分線交于點(diǎn)O。
(1)若∠ABC=40°,∠ ACB=50°,則∠BOC=_______
(2)若∠ABC+∠ ACB=lO0°,則∠BOC="________"
(3)若∠A=70°,則∠BOC=_________
(4)若∠BOC=140°,則∠A=________
(5)你能發(fā)現(xiàn)∠ BOC與∠ A之間有什么數(shù)量關(guān)系嗎?寫出并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教科書中這樣寫道:“我們把多項(xiàng)式及叫做完全平方式”,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng),使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求代數(shù)式最大值,最小值等問題.
例如:分解因式;求代數(shù)式的最小值,.可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式:_______.
(2)當(dāng)為何值時(shí),多項(xiàng)式有最大值?并求出這個(gè)最大值.
(3)利用配方法,嘗試解方程,并求出,的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com