【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長.
【答案】
(1)解:方法一:
∵在△ABO中,OA=OB,∠OAB=30°,
∴∠AOB=180°﹣2×30°=120°,
∵PA、PB是⊙O的切線,
∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
∴在四邊形OAPB中,
∠APB=360°﹣120°﹣90°﹣90°=60°.
方法二:
∵PA、PB是⊙O的切線∴PA=PB,OA⊥PA;
∵∠OAB=30°,OA⊥PA,
∴∠BAP=90°﹣30°=60°,
∴△ABP是等邊三角形,
∴∠APB=60°
(2)解:方法一:如圖①,連接OP;
∵PA、PB是⊙O的切線,
∴PO平分∠APB,即∠APO= ∠APB=30°,
又∵在Rt△OAP中,OA=3,∠APO=30°,
∴AP= =3 .
方法二:如圖②,作OD⊥AB交AB于點(diǎn)D;
∵在△OAB中,OA=OB,
∴AD= AB;
∵在Rt△AOD中,OA=3,∠OAD=30°,
∴AD=OAcos30°= ,
∴AP=AB= .
【解析】(1) 方法一: 根據(jù)等邊對等角及三角形的內(nèi)角和得出∠AOB,再根據(jù)切線的性質(zhì)及四邊形的內(nèi)角和得出答案;方法二:根據(jù)切線的性質(zhì)及余角的定義得出△ABP是等邊三角形,,從而得出結(jié)論;(2)方法一:如圖①,連接OP; 利用切線的性質(zhì)得出∠APO=30°,在Rt△OAP中,AP=,方法二:如圖②,作OD⊥AB交AB于點(diǎn)D;根據(jù)等腰三角形的三線合一得出AD= AB,在Rt△AOD中,AD=OAcos30°,從而得出結(jié)論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一期間,小明和小穎相約到樂山大佛景區(qū)參觀.小明乘私家車從成都出發(fā)1小時(shí)后,小穎乘坐高鐵從成都出發(fā),先到樂山高鐵站,然后轉(zhuǎn)乘出租車到樂山大佛景區(qū)(換車時(shí)間忽略不計(jì)),兩人恰好同時(shí)到達(dá)景區(qū).他們離開成都的距離y(千米)與時(shí)間t(小時(shí))的關(guān)系如圖所示,請結(jié)合圖象解決下面問題.
(1)高鐵的平均速度是每小時(shí)多少千米?
(2)當(dāng)小穎到達(dá)樂山高鐵站時(shí),小明距離樂山大佛景區(qū)還有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=∠C.
(B類)已知如圖,四邊形ABCD中,AB=BC,∠A=∠C,求證:AD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點(diǎn)C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y= x2﹣3x+m與y軸相交于點(diǎn)A,拋物線的對稱軸與x軸相交于點(diǎn)B,與CD交于點(diǎn)K.
(1)將矩形OCDE沿AB折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)F處.
①點(diǎn)B的坐標(biāo)為(、),BK的長是 , CK的長是;
②求點(diǎn)F的坐標(biāo);
③請直接寫出拋物線的函數(shù)表達(dá)式;
(2)將矩形OCDE沿著經(jīng)過點(diǎn)E的直線折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)G處,連接OG,折痕與OG相交于點(diǎn)H,點(diǎn)M是線段EH上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)H重合),連接MG,MO,過點(diǎn)G作GP⊥OM于點(diǎn)P,交EH于點(diǎn)N,連接ON,點(diǎn)M從點(diǎn)E開始沿線段EH向點(diǎn)H運(yùn)動(dòng),至與點(diǎn)N重合時(shí)停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點(diǎn)M的運(yùn)動(dòng)過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個(gè)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中的圖形均可以由“基本圖案”通過變換得到.(填序號)
(1)通過平移變換但不能通過旋轉(zhuǎn)變換得到的圖案是__;
(2)可以通過旋轉(zhuǎn)變換但不能通過平移變換得到的圖案是__;
(3)既可以由平移變換,也可以由旋轉(zhuǎn)變換得到的圖案是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC與△CDA關(guān)于點(diǎn)O成中心對稱,過點(diǎn)O任作直線EF分別交AD,BC于點(diǎn)E,F,則下則結(jié)論:①點(diǎn)E和點(diǎn)F,點(diǎn)B和點(diǎn)D是關(guān)于中心O的對稱點(diǎn);②直線BD必經(jīng)過點(diǎn)O;③四邊形ABCD是中心對稱圖形;④四邊形DEOC與四邊形BFOA的面積必相等;⑤△AOE與△COF成中心對稱.其中正確的個(gè)數(shù)為 ( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com