【題目】如圖所示,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四邊形ABCD的面積.

【答案】36

【解析】試題分析:根據(jù)勾股定理求得BD=5;由勾股定理的逆定理判定△BCD為直角三角形,則四邊形ABCD的面積=△ABD的面積+△BCD的面積.

試題解析:△ABD中,∠A是直角,AB=3,AD=4,

由勾股定理得 BD2=AD2+AB2=25.則BD=5

△BCD中,BC=12DC=13,

∴CD2=BD2+BC2=169

∴△BCD為直角三角形,且∠DBC=90°

S四邊形ABCD=SABD+SBCD=ADAB+BDBC=×4×3+×5×12=36

即四邊形ABCD的面積是36

考點: 1.勾股定理;2.勾股定理的逆定理.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,ECD中點,連結(jié)OE.過點CCFBD交線段OE的延長線于點F,連結(jié)DF.求證:

(1)ODE≌△FCE

(2)四邊形ODFC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+n與x軸交于點A,與y軸交于點B(點A與點B不重合),拋物線y=﹣ x2﹣2x+c經(jīng)過點A、B,拋物線的頂點為C.

(1)∠BAO=°;
(2)求tan∠CAB的值;
(3)在拋物線上是否存在點P,能夠使∠PCA=∠BAC?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D、E分別在BC、AC邊上,且∠ADE=60°,AB=3,BD=1,則EC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點,,其兩點間的距離公式為,同時,當兩點所在的直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為
已知點,,試求A,B兩點間的距離;
已知點A,B在平行于y軸的直線上,點A的縱坐標為5,點B的縱坐標為,試求AB兩點間的距離;
已知點,,判斷線段AB,BC,AC中哪兩條是相等的?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在某一次實驗中,測得兩個變量之間的關(guān)系如下表所示:

x

1

2

3

4

12

y

12.03

5.98

3.03

1.99

1.00

請你根據(jù)表格回答下列問題:
①這兩個變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請你簡要說明理由;
②請你寫出這個函數(shù)的解析式;
③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過點C作⊙O的切線,交BA的延長線交于點D,過點B作BE⊥BA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系內(nèi),一次函數(shù)ykxb(k0,b<0)的圖象分別與x軸、y軸和直線x4相交于A,B,C三點,直線x4x軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是-,求這個一次函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x﹣ 與x,y軸分別交于點A,B,與反比例函數(shù)y= (k>0)圖象交于點C,D,過點A作x軸的垂線交該反比例函數(shù)圖象于點E.

(1)求點A的坐標.
(2)若AE=AC.
①求k的值.
②試判斷點E與點D是否關(guān)于原點O成中心對稱?并說明理由.

查看答案和解析>>

同步練習冊答案