【題目】如圖,在平面角坐標系xOy,有一個等腰直角三角形△AOB,OAB=90°,直角邊AOx軸上,且AO=1,RtAOB繞原點O順時針旋轉(zhuǎn)90°后,再將各邊長擴大一倍,得到等腰直角三角形A1OB1;RtA1OB1繞原點O順時針轉(zhuǎn)90°后,再將各邊長擴大一倍,得到等腰三角形A2OB2......依此規(guī)律,得到等腰直角三角形A2017OB2017,則點B2017的坐標_________

【答案】22017,-22017

【解析】

根據(jù)題意得出B點坐標變化規(guī)律,進而得出點B2017的坐標位置,進而得出答案.

∵△AOB是等腰直角三角形,OA=1,
AB=OA=1,
B1,1),
RtAOB繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,
再將RtA1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰三角形A2OB2,且A2O=2A1O…,依此規(guī)律,
∴每4次循環(huán)一周,B12,-2),B2-4,-4),B3-8,8),B41616),
2017÷4=504…1
∴點B2017B1同在一個象限內(nèi),
-4=-22,8=23,16=24,
∴點B201722017,-22017).
故答案為(22017,-22017).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.

(1)求此反比例函數(shù)的表達式;

(2)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)圖象第一象限上一點,過點A軸于B點,以AB為直徑的圓恰好與y軸相切,交反比例函數(shù)圖象于點C,在AB的左側(cè)半圓上有一動點D,連結(jié)CDAB于點的面積為,的面積為,連接BC,______三角形,若的值最大為1,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】機器人海寶在某圓形區(qū)域表演按指令行走,如圖所示,海寶從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點A處,再沿正南方向行走14米至點B處,最后沿正東方向行走至點C處,點B、C都在圓O.(本題參考數(shù)據(jù):sin67.4°=,cos67.4°=,tan67.4°=)

(1)求弦BC的長;

(2)請判斷點A和圓的位置關(guān)系,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.如圖,在平面直角坐標系中,矩形的邊,點,在邊存在點,使得為“智慧三角形”,則點的坐標為:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB3米,臺階AC的坡度為1(ABBC=1),且BC、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點分別是邊的中點,延長到點,使,得四邊形.若使四邊形是正方形,則應(yīng)在中再添加一個條件為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+3a≠0)經(jīng)過點A(10)和點B(3,0),與y軸交于點C

1)求此拋物線的解析式;

2)若點P是直線BC下方的拋物線上一動點(不點BC重合),過點Py軸的平行線交直線BC于點D,設(shè)點P的橫坐標為m

①用含m的代數(shù)式表示線段PD的長.

②連接PB,PC,求PBC的面積最大時點P的坐標.

3)設(shè)拋物線的對稱軸與BC交于點E,點M是拋物線的對稱軸上一點,Ny軸上一點,是否存在這樣的點M和點N,使得以點C、E、MN為頂點的四邊形是菱形?如果存在,請直接寫出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案