【題目】下面是小明設(shè)計的過直線外一點作已知直線的平行線的尺規(guī)作圖過程.

已知:直線及直線外一點P.

求作:直線,使.

作法:如圖,

①在直線上取一點O,以點O為圓心,長為半徑畫半圓,交直線兩點;

②連接,以B為圓心,長為半徑畫弧,交半圓于點Q

③作直線.

所以直線就是所求作的直線.

根據(jù)小明設(shè)計的尺規(guī)作圖過程:

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明

證明:連接,

__________.

______________)(填推理的依據(jù)).

_____________)(填推理的依據(jù)).

【答案】1)補全的圖形如圖所示見解析;(2,等弧所對的圓周角相等內(nèi)錯角相等,兩直線平行.

【解析】

根據(jù)要求作圖即可;
根據(jù)圓的有關(guān)性質(zhì)和平行線的判定求解可得.

解:如圖所示:

證明:連接PBQB
,

等弧所對圓周角相等
內(nèi)錯角相等,兩直線平行
故答案為,等弧所對圓周角相等,內(nèi)錯角相等,兩直線平行.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,EBC邊的中點, FCD邊上的一點, DF=1.若M、N分別是線段ADAE上的動點,則MN+MF的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1A型鋼板可制成2C型鋼板和1D型鋼板;用1B型鋼板可制成1C型鋼板和3D型鋼板.現(xiàn)準備購買A、B型鋼板共100塊,并全部加工成C、D型鋼板.要求C型鋼板不少于120塊,D型鋼板不少于250塊,設(shè)購買A型鋼板x塊(x為整數(shù)).

(1)求A、B型鋼板的購買方案共有多少種?

(2)出售C型鋼板每塊利潤為100元,D型鋼板每塊利潤為120元.若將C、D型鋼板全部出售,請你設(shè)計獲利最大的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,∠ABC90°,DBC邊的中點,BEAD于點E,交ACF,若AB4,BC6,則線段EF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于點A,B,其中點B的坐標為(4,0),與y軸交于點C02).

1)求拋物線y=﹣+bx+c和直線BC的函數(shù)表達式;

2)點P是直線BC上方的拋物線上一個動點,當點P到直線BC的距離最大時,求點P的坐標;

3)連接點O與(2)中求出的點P,交直線BC于點D,點N是直線BC上的一個動點,連接ON,作DFON于點F,點F在線段ON上,當ODDF時,請直接寫出點N的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C的一定點,D是弦AB上的一定點,P是弦CB上的一動點.連接DP,將線段PD繞點P順時針旋轉(zhuǎn)得到線段.射線交于點Q.已知,設(shè)P,C兩點間的距離為xcm,P,D兩點間的距離,P,Q兩點的距離為.

小石根據(jù)學(xué)習函數(shù)的經(jīng)驗,分別對函數(shù),,隨自變量x的變化而變化的規(guī)律進行了探究,下面是小石的探究過程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了,,與x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

/cm

4.29

3.33

1.65

1.22

1.0

2.24

/cm

0.88

2.84

3.57

4.04

4.17

3.20

0.98

2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)據(jù)所對應(yīng)的點,,并畫出函數(shù),的圖象;

3)結(jié)合函數(shù)圖象,解決問題:連接DQ,當△DPQ為等腰三角形時,PC的長度約為_____cm.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,上一點,點在直徑的延長線上,且的切線,的延長線于點,連結(jié)

(1) 求證:的切線.

(2) ,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC與△ABD中,∠CAB=∠DBAβ,且∠ADB+∠ACB180°

提出問題:如圖1,當∠ADB=∠ACB90°時,求證:ADBC;

類比探究:如圖2,當∠ADB≠ACB時,ADBC是否還成立?并說明理由.

綜合運用:如圖3,當β18°,BC1,且ABBC時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為正方形ABCD的對角線,點EDC邊上一點(不與C、D重合),連接BE,以E為旋轉(zhuǎn)中心,將線段EB逆時針旋轉(zhuǎn)90°,得到線段EF,連接DF

1)請在圖中補全圖形.

2)求證:ACDF

3)探索線段EDDF、AC的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習冊答案