【題目】如圖,AB是⊙O的直徑,點C在⊙O上,過點C的切線交AB的延長線于點D,∠ACD=120°.
(1)求證:AC=CD;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
【答案】(1)證明見解析;(2)S陰影=.
【解析】
(1)連接OC,則有∠OCD=90°,由已知從而可得∠A的度數(shù),由內角和從而可得∠D的度數(shù),從而得證;
(2)用△OCD的面積減去扇形OCB的面積即可得到陰影部分的面積.
(1)連接OC,∵OC是切線,∴∠OCD=90°,∵∠ACD=120°,∴∠ACO=∠ACD-∠OCD=30°,∵OA=OC,∴∠A=∠ACO=30°,∴∠D=180°-∠A-∠ACD=30°=∠A,∴AC=CD;
(2)由(1)可得∠COD=60°,∠OCD=90°,∴OD=2OC=4,CD=2 ,
∴S陰影=S△OCD-S扇形OCB= ×2×2 - =
科目:初中數(shù)學 來源: 題型:
【題目】(8分)為獎勵在演講比賽中獲獎的同學,班主任派學習委員小明為獲獎同學買獎品,要求每人一件.小明到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇.如果買4個筆記本和2支鋼筆,則需86元;如果買3個筆記本和1支鋼筆,則需57元.
(1)求購買每個筆記本和鋼筆分別為多少元?
(2)售貨員提示,買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買x(x>0)支鋼筆需要花y元,請你求出y與x的函數(shù)關系式;
(3)在(2)的條件下,小明決定買同一種獎品,數(shù)量超過10個,請幫小明判斷買哪種獎品省錢.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等邊△ABC內一點,且PA=6,PC=8,PB=10,若△APB繞點A逆時針旋轉60后,得到△AP′C,則∠APC=( ).
A.150°B.120°C.100°D.110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑作⊙O經過AC的中點D,然后過點D作DE⊥BC,垂足為點E.
(1)求證:DE是⊙O的切線;
(2)若⊙O的直徑為10,,求線段BE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,1),過A作線段AB∥y軸(B在A下方),以AB為邊向右作正方形ABCD.設點B的縱坐標為m,二次函數(shù)y=ax2﹣4ax的圖象的頂點為E.
(1)AB= .(用含m的代數(shù)式表示);
(2)當點A恰好在二次函數(shù)y=ax2﹣4ax的圖象上時,求二次函數(shù)y=ax2﹣4ax的關系式.
(3)當點E恰為線段BC的中點時,求經過點D的反比例函數(shù)的關系式;
(4)若a=m+1,當二次函數(shù)y=ax2﹣4ax的圖象恰與正方形ABCD有三個交點且二次函數(shù)頂點E不位于直線BC下方時,直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2-x-(m+1)=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠C=90°,AC=3,BC=4,將△ABC繞點C順時針旋轉a度(0°<a<180°)得到△DCE,點A與點D對應,點B與點E對應,當點D落在△ABC的邊上時,則BD的長_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開.
①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com