【題目】對(duì)給定的一張矩形紙片ABCD進(jìn)行如下操作:先沿CE折疊,使點(diǎn)B落在CD邊上(如圖①),再沿CH折疊,這時(shí)發(fā)現(xiàn)點(diǎn)E恰好與點(diǎn)D重合(如圖②

(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;

(2)將該矩形紙片展開(kāi).

①如圖③,折疊該矩形紙片,使點(diǎn)C與點(diǎn)H重合,折痕與AB相交于點(diǎn)P,再將該矩形紙片展開(kāi).求證:∠HPC=90°;

②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點(diǎn),要求只有一條折痕,且點(diǎn)P在折痕上,請(qǐng)簡(jiǎn)要說(shuō)明折疊方法.(不需說(shuō)明理由)

【答案】(1);(2)①證明見(jiàn)解析;②見(jiàn)解析.

【解析】(1)依據(jù)△BCE是等腰直角三角形,即可得到CE=BC,由圖②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;

(2)①由翻折可得,PH=PC,即PH2=PC2,依據(jù)勾股定理可得AH2+AP2=BP2+BC2,進(jìn)而得出AP=BC,再根據(jù)PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),進(jìn)而得到∠CPH=90°;

②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿著過(guò)D的直線翻折,使點(diǎn)A落在CD邊上,此時(shí)折痕與AB的交點(diǎn)即為P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,進(jìn)而得到CP平分∠BCE,故沿著過(guò)點(diǎn)C的直線折疊,使點(diǎn)B落在CE上,此時(shí),折痕與AB的交點(diǎn)即為P.

(1)由圖①,可得∠BCE=∠BCD=45°,

又∵∠B=90°,

∴△BCE是等腰直角三角形,

,即CE=BC,

由圖②,可得CE=CD,而AD=BC,

∴CD=AD,

=;

(2)①設(shè)AD=BC=a,則AB=CD=a,BE=a,

∴AE=(﹣1)a,

如圖③,連接EH,則∠CEH=∠CDH=90°,

∵∠BEC=45°,∠A=90°,

∴∠AEH=45°=∠AHE,

∴AH=AE=(﹣1)a,

設(shè)AP=x,則BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,

∴AH2+AP2=BP2+BC2,

即[(﹣1)a]2+x2=(a﹣x)2+a2,

解得x=a,即AP=BC,

又∵PH=CP,∠A=∠B=90°,

∴Rt△APH≌Rt△BCP(HL),

∴∠APH=∠BCP,

又∵Rt△BCP中,∠BCP+∠BPC=90°,

∴∠APH+∠BPC=90°,

∴∠CPH=90°;

②折法:如圖,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,

故沿著過(guò)D的直線翻折,使點(diǎn)A落在CD邊上,此時(shí)折痕與AB的交點(diǎn)即為P;

折法:如圖,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,

由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,

又∵∠DCH=∠ECH,

∴∠BCP=∠PCE,即CP平分∠BCE,

故沿著過(guò)點(diǎn)C的直線折疊,使點(diǎn)B落在CE上,此時(shí),折痕與AB的交點(diǎn)即為P.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為(a,0),(b,0),且滿足現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接ACBD

1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積;

2)在y軸上是否存在一點(diǎn)M,連接MA,MB,使SMAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo);若不存在,試說(shuō)明理由;

3)點(diǎn)P是射線BD上的一個(gè)動(dòng)點(diǎn)(不與B,D重合),連接PC,PA,求∠CPA與∠DCP、∠BAP之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各圖中的MA1與NAn平行.

(1)圖①中的A1+A2= 度,圖②中的A1+A2+A3= 度,

圖③中的A1+A2+A3+A4= 度,圖④中的A1+A2+A3+A4+A5= 度,…,

第⑩個(gè)圖中的A1+A2+A3++A10=

(2)第n個(gè)圖中的A1+A2+A3++An=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=-x2x+x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸于點(diǎn)C,已知點(diǎn)D(0,-).

(1)求直線AC的解析式;

(2)如圖1,P為直線AC上方拋物線上的一動(dòng)點(diǎn),當(dāng)PBD的面積最大時(shí),過(guò)PPQx軸于點(diǎn)Q,M為拋物線對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),過(guò)My軸的垂線,垂足為點(diǎn)N,連接PM、NQ,求PM+MN+NQ的最小值;

(3)在(2)問(wèn)的條件下,將得到的PBQ沿PB翻折得到PBQ′,將PBQ′沿直線BD平移,記平移中的PBQ′P′B′Q″,在平移過(guò)程中,設(shè)直線P′B′x軸交于點(diǎn)E,則是否存在這樣的點(diǎn)E,使得B′EQ″為等腰三角形?若存在,求此時(shí)OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DEBC于點(diǎn)E.

(1)試判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)過(guò)點(diǎn)DDFAB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,.過(guò)BBE//AC.

(1)BEAC之間的距離;

(2)FBE上一點(diǎn),連接AF,過(guò)CCG//AFBEG.若∠FAB=15°,

①依題意補(bǔ)全圖形;

②求證:四邊形AFGC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】)如圖,中,,上任意一點(diǎn),以點(diǎn)為中心,取旋轉(zhuǎn)角等于,把逆時(shí)針旋轉(zhuǎn),畫(huà)出旋轉(zhuǎn)后的圖形.

)如圖,等邊中,邊上一點(diǎn),的延長(zhǎng)線上,且

求證:

)已知:如圖,在中,,邊上一點(diǎn),延長(zhǎng)線上一點(diǎn),且,已知.寫(xiě)出求線段長(zhǎng)的具體思路(即添加輔助線的方法,推導(dǎo)的具體步驟詳寫(xiě),其它的寫(xiě)出關(guān)鍵步驟或結(jié)果即可),并給出最后結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B,EC,F在一條直線上,ACDE,A=D,AB=DF

1)試說(shuō)明:ABC≌△DFE;

2)若BF=13EC=7,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一條筆直的公路進(jìn)行跑步訓(xùn)練,可以用如圖所示一條直線上來(lái)刻畫(huà)他在公路上跑步情境.假定向右跑步的路程記為正數(shù),向左跑步的路程記為負(fù)數(shù),則所跑步的各段路程依次記為:+5,-3,-6+8,-6+12,-10(單位:百米)

1)小明最后是否回到出發(fā)點(diǎn)?

2)小明在跑步過(guò)程中距離出發(fā)點(diǎn)最遠(yuǎn)是多少米?

3)在跑步過(guò)程中,如果小明每跑1千米會(huì)消耗約60卡熱量,那么小明此次訓(xùn)練一共會(huì)消耗多少卡?

查看答案和解析>>

同步練習(xí)冊(cè)答案