【題目】如圖,P是等邊△ABC內(nèi)一點,且PA=6,PC=8,PB=10,若△APB繞點A逆時針旋轉(zhuǎn)60后,得到△AP′C,則∠APC=( ).
A.150°B.120°C.100°D.110°
【答案】A
【解析】
連接PP′,根據(jù)旋轉(zhuǎn)變換的性質(zhì)可得△AP′C和△APB全等,根據(jù)全等三角形對應(yīng)邊相等可得P′A=PA,P′C=PB,然后證明△APP′是等邊三角形,根據(jù)等邊三角形的每一個角都是60°可得∠APP′=60°,每一條邊都相等可得PP′=PA,再根據(jù)勾股定理逆定理證明△P′PC是直角三角形,然后根據(jù)∠APC=∠APP′+∠P′PC代入數(shù)據(jù)進(jìn)行計算即可得解.
如圖,連接PP′,
∵△APB繞點A逆時針旋轉(zhuǎn)60°得到△AP′C,
∴△AP′C≌△APB,
∴P′A=PA=6,P′C=PB=10,
∵旋轉(zhuǎn)角是60,
∴△APP′是等邊三角形,
∴∠APP′=60,PP′=PA=6,
∵PP′+PC=6+8=100,P′C=PB=10=100,
∴PP′+PC=P′C,
∴△P′PC是以∠P′PC為直角的直角三角形,
∴∠APC=∠APP′+∠P′PC=60+90=150°.
故答案為:A
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:則下面結(jié)論中不正確的是( )
A.新農(nóng)村建設(shè)后,種植收入減少
B.新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
C.新農(nóng)村建設(shè)后,其他收入增加了一倍以上
D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,AB長為半徑畫弧,交邊AD于點;②再分別以B,F為圓心畫弧,兩弧交于平行四邊形ABCD內(nèi)部的點G處;③連接AG并延長交BC于點E,連接BF,若BF=3,AB=2.5,則AE的長為( )
A.2B.4C.8D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,點D,E,N分別是△ABC的AB,AC,BC邊上的中點,連接AN,DE交于點M.
(1)觀察猜想:的值為 :的值為 ;
(2)探究與證明:將△ADE繞點A按順時針方向旋轉(zhuǎn)α角(0°<α<360°),且△ADE內(nèi)部的線段AM隨之旋轉(zhuǎn),如圖2所示,連接BD,CE,MN,試探究線段BD與CE和BD與MN之間分別有什么樣的數(shù)量關(guān)系,并證明;
(3)拓展與延伸:△ADE在旋轉(zhuǎn)的過程中,設(shè)直線CE與BD相交于點F,當(dāng)∠CAE=90°時,BF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解陽光社區(qū)20~60歲居民購物最喜歡的支付方式,該興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù).
(2)補(bǔ)全條形統(tǒng)計圖.
(3)該社區(qū)中20~60歲的居民約5000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,過點C的切線交AB的延長線于點D,∠ACD=120°.
(1)求證:AC=CD;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx的圖象交x軸正半軸于點A,頂點為P,一次函數(shù)y=x﹣3的圖象交x軸于點B,交y軸于點C,∠OCA的正切值為.
(1)求二次函數(shù)的解析式與頂點P坐標(biāo);
(2)將二次函數(shù)圖象向下平移m個單位,設(shè)平移后拋物線頂點為P′,若S△ABP=S△BCP,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的BC邊上一點,連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點C的對應(yīng)點E落在上.
(1)求證:AE=AB;
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com