【題目】下列運算正確的是( )
A.a2+a3=a5
B.(﹣2a2)3÷( )2=﹣16a4
C.3a﹣1=
D.(2 a2﹣ a)2÷3a2=4a2﹣4a+1
【答案】D
【解析】解:A、a2+a3 , 無法計算,故此選項錯誤; B、(﹣2a2)3÷( )2=﹣8a6÷ =﹣32a4 , 故此選項錯誤;
C、3a﹣1= ,故此選項錯誤;
D、(2 a2﹣ a)2÷3a2=4a2﹣4a+1,正確.
故選:D.
【考點精析】利用整數(shù)指數(shù)冪的運算性質(zhì)和合并同類項對題目進行判斷即可得到答案,需要熟知aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是反比例函數(shù)的圖像上的一個動點,經(jīng)過點的直線交軸負(fù)半軸于點,交軸正半軸于點.過點作軸的垂線,交反比例函數(shù)的圖像于點.過點作軸于點,交于點,連接.設(shè)點的橫坐標(biāo)是.
(1)若,求點的坐標(biāo)(用含的代數(shù)式表示);
(2)若,當(dāng)四邊形是平行四邊形時,求的值,并求出此時直線對應(yīng)的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖像如圖所示,則下列結(jié)論:
①abc>0;②a+b+c=2;③b>1;④a< .
其中正確的結(jié)論是( )
A.①②
B.②③
C.③④
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2k+1)x+k2+k(k>0)
(1)當(dāng)k= 時,將這個二次函數(shù)的解析式寫成頂點式;
(2)求證:關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點A關(guān)于BC邊的對稱點為A′,點B關(guān)于AC邊的對稱點為B′,點C關(guān)于AB邊的對稱點為C′,則△ABC與△A′B′C′的面積之比為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com