【題目】如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).

【答案】192.1

【解析】分析:由于B點在A點的北偏東75°方向,所以正北方向與AB形成的夾角為75°,而CA的南偏東15°方向,所以正南方向與AC形成的夾角為15°,這樣BAC=90°,△ABC是直角三角形;因為AB=150,AC=120,所以根據(jù)勾股定理即可求出BC的值.

詳解:對圖形進行點標注,如圖所示.

B點在A點的北偏東75°方向,

∴∠BAD=75°,

CA的南偏東15°方向,

∴∠EAC=15°,所以BAC=90°,

Rt△ABC中,

AB=150,AC=120,

BC=≈192.1.

故答案為:192.1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點E、M在BC上,則∠EAN=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在等腰直角△ABC中,∠B=90°,將△ABC繞點 A逆時針旋轉(zhuǎn)60°后得到的△AB′C′,則∠BAC′等于(

A.105°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】折疊矩形紙片ABCD的一邊AD,使點D落在BC邊的點F,已知AB=8cm,BC=10cm,折痕AE的長( )

A. cm B. cm C. 12cm D. 13cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】飛機著陸后滑行的距離S(單位:m)關(guān)于滑行時間t(單位:s)的函數(shù)解析式是:S=60t﹣1.5t2
(1)直接指出飛機著陸時的速度;
(2)直接指出t的取值范圍;
(3)畫出函數(shù)S的圖象并指出飛機著陸后滑行多遠才能停下來?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結(jié)DB,過點DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請參照上述證法,利用圖2完成下面的證明.

將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=8,A=60°,ADC=150°,四邊形ABCD的周長為32.

(1)求∠BDC的度數(shù);

(2)四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某瓜農(nóng)采用大棚栽培技術(shù)種植了一畝地的良種西瓜,這畝地產(chǎn)西瓜600個,在西瓜上市前該瓜農(nóng)隨機摘下了10個成熟的西瓜,稱重如下:

西瓜質(zhì)量(單位:千克)

5.4

5.3

5.0

4.8

4.4

4.0

西瓜數(shù)量(單位:個)

1

2

3

2

1

1

(1)10個西瓜質(zhì)量的眾數(shù)和中位數(shù)分別是       

(2)計算這10個西瓜的平均質(zhì)量,并根據(jù)計算結(jié)果估計這畝地共可收獲西瓜約多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC的平分線BF與△ABC的外角平分線CF相交于點F,過FDF∥BC,交ABD,交ACE

1)寫出圖中所有的等腰三角形,并選擇其中一個說明理由。

2)直接寫出BD,CE,DE之間的數(shù)量關(guān)系。

3)若DE=5cm,CE=8cmBF=24cm,求△BDF的面積。

查看答案和解析>>

同步練習冊答案