【題目】如圖,在△ABC中,∠ABC的平分線BF與△ABC的外角平分線CF相交于點F,過F作DF∥BC,交AB于D,交AC于E。
(1)寫出圖中所有的等腰三角形,并選擇其中一個說明理由。
(2)直接寫出BD,CE,DE之間的數(shù)量關(guān)系。
(3)若DE=5cm,CE=8cm,BF=24cm,求△BDF的面積。
【答案】(1)詳見解析;(2)BD=DE+CE;(3)60.
【解析】試題分析:(1)根據(jù)已知條件,BF、CF分別平分∠ABC、∠ACB的外角,且DE∥BC,可得∴∠DBF=∠DFB,∠ECF=∠EFC,因此可判斷出△BDF和△CEF為等腰三角形;
(2)由(1)可得出DF=BD,CE=EF,所以得BD-CE=DE;
(3)作BF邊上的高,由勾股定理得到高為5,計算得到△BDF的面積為60.
試題解析:(1)△DBF、△ECF
以說明△DBF為例:
∵BF平分∠ABC
∴∠DBF=∠CBF
∵DF∥BC
∴∠CBF=∠DFB
∴∠DBF=∠DFB,
即△DBF為等腰三角形;
(2)存在:BDCE=DE,
證明:∵DF=BD,CE=EF,
∴BDCE=FDEF=DE.
(3)作DM⊥BF與點M,
由(1)知△DBF為等腰三角形,
∴BM=BF=12cm,
由(2)知BD=DE+EC=5+8=13cm,
由勾股定理,得DM==5cm,
S△BDF=×BF×DM=×24×5= 60(cm2)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次測繪活動中,某同學(xué)站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,CD⊥AB于D.
(1)若∠A=38,求∠DCB的度數(shù);
(2)若AB=5,CD=3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:△ADE∽△DCF;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時, 成立?并證明你的結(jié)論;
(3)如圖③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,請直接寫出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從一個建筑物的A處測得對面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測點與樓的水平距離AD為31m,樓BC的高度大約為多少?(結(jié)果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,某學(xué)校計劃用彩色的地面磚鋪設(shè)教學(xué)樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設(shè)計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設(shè)的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學(xué),F(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學(xué)的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決多少資金?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com