【題目】(閱讀理解)若數(shù)軸上兩點AB所表示的數(shù)分別為ab,則有

AB兩點的中點表示的數(shù)為;

②當ba時,A、B兩點間的距離為ABba

(解決問題)數(shù)軸上兩點A、B所表示的數(shù)分別為ab,且滿足|a+2|+b820200

1)求出A、B兩點的中點C表示的數(shù);

2)點D從原點O點出發(fā)向右運動,經(jīng)過2秒后點DA點的距離是點DC點距離的2倍,求點D的運動速度是每秒多少個單位長度?

(數(shù)學(xué)思考)(3)點E以每秒1個單位的速度從原點O出發(fā)向右運動,同時,點M從點A出發(fā)以每秒7個單位的速度向左運動,點N從點B出發(fā),以每秒10個單位的速度向右運動,P、Q分別為ME、ON的中點.思考:在運動過程中,的值是否發(fā)生變化?請說明理由.

【答案】1AB兩點的中點C表示的數(shù)是3;(2)點D的運動速度是每秒個單位長度,或每秒4個單位長度;(3=2(定值).理由見解析.

【解析】

1)分別求出a、b的值,然后求出中點C的值;

2)分情況討論,當點D運動到點C左邊和C右邊時,得出不一樣的C值;

3)設(shè)運動時間為t,則點E對應(yīng)的數(shù)是t,點M對應(yīng)的數(shù)是﹣27t,點N對應(yīng)的數(shù)是8+10t

1)∵|a+2|+b820200

a=﹣2b8,

A、B兩點的中點C表示的數(shù)是:

2)設(shè)點D的運動速度為v,

①當點D運動到點C左邊時:由題意,有2v﹣(﹣2)=232v),

解之得;

②當點D運動到點C右邊時:由題意,有2v﹣(﹣2)=22v3),

解之得v4

∴點D的運動速度是每秒個單位長度,或每秒4個單位長度;

3)設(shè)運動時間為t,則點E對應(yīng)的數(shù)是t,點M對應(yīng)的數(shù)是﹣27t,點N對應(yīng)的數(shù)是8+10t

PME的中點,

P點對應(yīng)的數(shù)是

又∵QON的中點,

Q點對應(yīng)的數(shù)是,

MN=(8+10t)﹣(﹣27t)=10+17tOEtPQ=(4+5t)﹣(﹣13t)=5+8t,

(定值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計劃生產(chǎn)兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155.

1)甲、乙兩種材料每千克分別是多少元?

2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過9900元,且生產(chǎn)產(chǎn)品不少于38件,問符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?

3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費40元,生產(chǎn)一件產(chǎn)品需加工費50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費+加工費)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了防止水土流失,某村開展綠化荒山活動,計劃經(jīng)過若干年使本村綠化總面積新增360萬平方米.自2014年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務(wù).問實際每年綠化面積多少萬平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,ABAC=10,BC=12,DBC邊上的任意一點,過點D分別作DEABDFAC,垂足分別為E,F,則DEDF______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B在數(shù)軸上對應(yīng)的數(shù)分別用+2、﹣6表示,P是數(shù)軸上的一個動點.

1)數(shù)軸上A、B兩點的距離為 

2)當P點滿足PB2PA時,求P點表示的數(shù).

3)將一枚棋子放在數(shù)軸上k0點,第一步從k點向右跳2個單位到k1,第二步從k1點向左跳4個單位到k2,第三步從k2點向右跳6個單位到k3,第四步從k3點向左跳8個單位到k4

如此跳6步,棋子落在數(shù)軸的k6點,若k6表示的數(shù)是12,則ko的值是多少?

若如此跳了1002步,棋子落在數(shù)軸上的點k1002,如果k1002所表示的數(shù)是1998,那么k0所表示的數(shù)是  (請直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在紙面上有一數(shù)軸,如圖所示,點O為原點,點A1、A2、A3分別表示有理數(shù)1、23、,點B1、B2、B3分別表示有理數(shù)﹣1、﹣2、﹣3、

1)折疊紙面:

①若點A1與點B1重合,則點B2與點   重合;

②若點B1與點A2重合,則點A5與有理數(shù)   對應(yīng)的點重合;

③若點B1A3重合,當數(shù)軸上的M、NMN的左側(cè))兩點之間的距離為9,且MN兩點經(jīng)折疊后重合時,則M、N兩點表示的有理數(shù)分別是      ;

2)拓展思考:

A在數(shù)軸上表示的有理數(shù)為a,用|a|表示點A到原點O的距離.

|a1|是表示點A到點   的距離;

②若|a1|3,則有理數(shù)a   ;

③若|a1|+|a+2|5,則有理數(shù)a   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給正五邊形的頂點依次編號為12,34,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次移位.如:小宇在編號為3的頂點上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次移位,這時他到達編號為1的頂點;然后從1→2為第二次移位.若小宇從編號為2的頂點開始,第15移位后,則他所處頂點的編號為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,過A點作AG∥DB,交CB的延長線于點G.

(1)求證:DE∥BF;

(2)若∠G=90,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標系中,將ABO繞點A順時針旋轉(zhuǎn)到AB1C1的位置,點BO分別落在點B1、C1處,點B1x軸上,再將AB1C1繞點B1順時針旋轉(zhuǎn)到A1B1C2的位置,點C2x軸上,將A1B1C2繞點C2順時針旋轉(zhuǎn)到A2B2C2的位置,點A2x軸上,依次進行下去若點A,0),B0,2),則點B2018的坐標為(  )

A. 6048,0B. 6054,0C. 60482D. 6054,2

查看答案和解析>>

同步練習(xí)冊答案