【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與x軸交于點(diǎn)A,與y軸交于B點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),在第一象限的拋物線上取一點(diǎn)D,過點(diǎn)D作DC⊥x軸于點(diǎn)C,交直線AB于點(diǎn)E.
(1)求拋物線的函數(shù)表達(dá)式
(2)是否存在點(diǎn)D,使得△BDE和△ACE相似?若存在,請求出點(diǎn)D的坐標(biāo),若不存在,請說明理由;
(3)如圖2,F是第一象限內(nèi)拋物線上的動(dòng)點(diǎn)(不與點(diǎn)D重合),點(diǎn)G是線段AB上的動(dòng)點(diǎn).連接DF,FG,當(dāng)四邊形DEGF是平行四邊形且周長最大時(shí),請直接寫出點(diǎn)G的坐標(biāo).
【答案】(1)y=﹣x2+x+3;(2)存在.點(diǎn)D的坐標(biāo)為(,3)或(,);(3)G(,).
【解析】
(1)根據(jù),求出A,B的坐標(biāo),再代入拋物線解析式中即可求得拋物線解析式;
(2)△BDE和△ACE相似,要分兩種情況進(jìn)行討論:①△BDE∽△ACE,求得,
;②△DBE∽△ACE,求得,;
(3)由DEGF是平行四邊形,可得DE∥FG,DE=FG,設(shè),,,,根據(jù)平行四邊形周長公式可得:DEGF周長=,由此可求得點(diǎn)G的坐標(biāo).
解:(1)在中,令,得,令,得,
,,
將,分別代入拋物線中,得:,解得:,
拋物線的函數(shù)表達(dá)式為:.
(2)存在.如圖1,過點(diǎn)作于,設(shè),則,,;
,,,,
和相似,
或
①當(dāng)時(shí),,
,即:
,解得:(舍去),(舍去),,
,
②當(dāng)時(shí),
,
,即:
,解得:(舍,(舍,,
,;
綜上所述,點(diǎn)的坐標(biāo)為,或,;
(3)如圖3,四邊形是平行四邊形
,
設(shè),,,,
則:,,
,即:,
,即:
過點(diǎn)作于,則
,即:
,即:
周長
,
當(dāng)時(shí),周長最大值,
,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初2019級即將迎來中考,很多家長都在為孩子準(zhǔn)備營養(yǎng)午餐.一家快餐店看準(zhǔn)了商機(jī),在5月5號推出了A,B,C三種營養(yǎng)套餐.套餐C單價(jià)比套餐A貴5元,三種套餐的單價(jià)均為整數(shù),其中A套餐比C套餐少賣12份,B套餐比C套餐少賣6份,且C套餐當(dāng)天賣出的數(shù)量大于26且不超過32,當(dāng)天總銷售量為偶數(shù)且當(dāng)天銷售額達(dá)到了1830元,商家發(fā)現(xiàn)C套餐很受歡迎,因此在6號加推出了C套餐升級版D套餐,四種套餐同時(shí)售賣,A套餐比5號銷售量減少,C套餐比5號銷售量增加,且A減少的份數(shù)比C套餐增加的份數(shù)多5份,B套餐銷售量不變,由于商家人手限制,兩天的總銷售量相同,則其他套餐單價(jià)不變的情況下,D套餐至少比C套餐費(fèi)貴______時(shí),才能使6號銷售額達(dá)到1950元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù))
(1)該函數(shù)的圖像與軸公共點(diǎn)的個(gè)數(shù)是( )
A.0 B.1 C.2 D.1或2
(2)求證:不論為何值,該函數(shù)的圖像的頂點(diǎn)都在函數(shù)的圖像上.
(3)當(dāng)時(shí),求該函數(shù)的圖像的頂點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,m),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.
(3)根據(jù)圖像直接寫出使成立的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場擬建三件矩形飼養(yǎng)室,飼養(yǎng)室一面靠現(xiàn)有墻(墻可用長≤20m),中間用兩道墻隔開,已知計(jì)劃中的建筑材料可建圍墻的總長為60m,設(shè)飼養(yǎng)室寬為x(m),總占地面積為y(m2)(如圖所示).
(1)求y關(guān)于x的函數(shù)表達(dá)式,并直接寫出自變量x的取值范圍;
(2)三間飼養(yǎng)室占地總面積有可能達(dá)到210m2嗎?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4).△AOB是等邊三角形,點(diǎn)B在第一象限.
(1)如圖①,求點(diǎn)B的坐標(biāo);
(2)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,以點(diǎn)A為旋轉(zhuǎn)中心,把△AOP逆時(shí)針旋轉(zhuǎn),使邊AO與AB重合,得△ABD.
①如圖②,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(,0)時(shí),求此時(shí)點(diǎn)D的坐標(biāo);
②求在點(diǎn)P運(yùn)動(dòng)過程中,使△OPD的面積等于的點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種油菜籽在相同條件下的發(fā)芽試驗(yàn)結(jié)果如下表:
每批粒數(shù)n | 5 | 10 | 70 | 130 | 310 | 700 | 1500 | 2000 | 3000 |
發(fā)芽粒數(shù)m | 4 | 9 | 60 | 116 | 282 | 639 | 1339 | 1806 | 2715 |
請用頻率估計(jì)概率的方法來估計(jì)這批油菜籽在相同條件下的發(fā)芽概率是_______(精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形 OA1B1C1,依此方式,繞點(diǎn)O連續(xù)旋轉(zhuǎn)2019次得到正方形OA2019B2019C2019,如果點(diǎn)A的坐標(biāo)為(1,0),那么點(diǎn)B2019的坐標(biāo)為( 。
A.B.C.(1,1)D.(﹣1,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com