分析 (1)根據(jù)矩形性質得出AB=DC,∠A=∠D=90°,根據(jù)全等三角形的判定推出即可;
(2)求出四邊形MENF是平行四邊形,求出∠BMC=90°和ME=MF,根據(jù)正方形的判定推出即可.
解答 (1)證明:∵四邊形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M為AD的中點,
∴AM=DM,
在△ABM和△DCM中
$\left\{\begin{array}{l}{AB=DC}\\{∠A=∠D}\\{AM=MD}\end{array}\right.$,
∴△ABM≌△DCM(SAS),
∴MB=MC;
(2)解:當AB:AD=1:2時,四邊形MENF是正方形,
理由是:∵AB:AD=1:2,AM=DM,AB=CD,
∴AB=AM=DM=DC,
∵∠A=∠D=90°,
∴∠ABM=∠AMB=∠DMC=∠DCM=45°,
∴∠BMC=90°,
∵四邊形ABCD是矩形,
∴∠ABC=∠DCB=90°,
∴∠MBC=∠MCB=45°,
∴BM=CM,
∵N、E、F分別是BC、BM、CM的中點,
∴BE=CF,ME=MF,NF∥BM,NE∥CM,
∴四邊形MENF是平行四邊形,
∵ME=MF,∠BMC=90°,
∴四邊形MENF是正方形,
即當AB:AD=1:2時,四邊形MENF是正方形,
故答案為:1:2.
點評 本題考查了矩形的性質和判定、平行四邊形的判定、正方形的判定、全等三角形的性質和判定、三角形的中位線的應用等知識,正確掌握正方形的判定方法是解題關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 75° | B. | 76° | C. | 77° | D. | 78° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com