【題目】下列函數(shù)關系式中,二次函數(shù)的個數(shù)有( )
(1)y=3(x-1)2+1 (2)y=(3)S=3-2t2 (4)y= x4+2x2-1 (5)y=3x(2-x)+ 3x2 (6) y=mx2+x
A.1個B.2個C.3個D.4個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,科技小組準備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設AD的長為m,DC的長為m。
(1)求與之間的函數(shù)關系式;
(2)根據(jù)實際情況,對于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請說明理由;
(3)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,每個小正方形的邊長為1,每個小正方形的頂點叫做格點.三角形ABC的三個頂點均在格點上,以點A為圓心的弧EF與BC相切于格點D,分別交AB,AC于點E,F.
(1)直接寫出三角形ABC邊長AB= ;AC= ;BC= .
(2)求圖中由線段EB,BC,CF及弧FE所圍成的陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.直角尺的直角頂點放在點P處,直角尺的兩邊分別交AB、BC于點E、F,連接EF(如圖1).
(1)當點E與點B重合時,點F恰好與點C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長.
(2)探究:將直角尺從圖2中的位置開始,繞點P順時針旋轉,當點E和點A重合時停止.在這個過程中(圖1是該過程的某個時刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請說明理由.
② 設AE=x,當△PBF是等腰三角形時,請直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小賢與小杰在探究某類二次函數(shù)問題時,經歷了如下過程:
求解體驗:
(1)已知拋物線y=﹣x2+bx﹣3經過點(﹣1,0),則b= ,頂點坐標 ,該拋物線關于點(0,1)成中心對稱的拋物線的表達式是 .
抽象感悟:
我們定義:對于拋物線y=ax2+bx+c(a≠0),以y軸上的點M(0,m)為中心,作該拋物線關于點M對稱的拋物線y',則我們又稱拋物線y'為拋物線y的“衍生拋物線”,點M為“衍生中心”.
(2)已知拋物線y=﹣x2﹣2x+5關于點(0,m)的衍生拋物線為y',若這兩條拋物線有交點,求m的取值范圍.
問題解決:
(3)已知拋物線y=ax2+2ax﹣b(a≠0)若拋物線y的衍生拋物線為y'=bx2﹣2bx+a2(b≠0),兩拋物線有兩個交點,且恰好是它們的頂點,求a,b的值及衍生中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于圓O ,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.
(1)若∠E=500, ∠F=400,求∠A的度數(shù).
(2)探究∠E、∠F、∠A的關系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為△ABD外接圓上的一動點(點C不在上,且不與點B,D重合),∠ACB=∠ABD=45°.
(1)求證:BD是該外接圓的直徑;
(2)連結CD,求證:AC=BC+CD;
(3)若△ABC關于直線AB的對稱圖形為△ABM,連接DM,試探究,三者之間滿足的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AB=AC=6,D為邊AB上一動點(不與B點重合),連接CD,將線段CD繞著點D逆時針旋轉90°得到DE,連接BE,則S△BDE的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com