【題目】如圖,G是線段AB上一點,ACDG相交于點E

1)請先作出∠ABC的平分線BF,交AC于點F;(尺規(guī)作圖,保留作圖痕跡,不寫作法與證明)

2)然后證明當(dāng):ADBC,ADBC,∠ABC2ADG時,DEBF

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)角平分線的作圖方法作圖即可;

2)由題意易證ADE≌△CBF推出DEBF

1)解:以B為圓心、適當(dāng)長為半徑畫弧,交ABBCM、N兩點,分別以M、N為圓心、大于MN長為半徑畫弧,兩弧相交于點P,過B、P作射線BFACF

2)證明如下:∵ADBC,∴∠DAC=∠C

BF平分∠ABC,∴∠ABC2FBC

又∵∠ABC2ADG,∴∠D=∠FBC

ADECBF中,

∴△ADE≌△CBFASA),

DEBF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:
如圖,拋物線y= x2 x﹣4與x軸交與A,B兩點(點B在點A的右側(cè)),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q.

(1)求點A,B,C的坐標(biāo).
(2)當(dāng)點P在線段OB上運動時,直線l分別交BD,BC于點M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點P在線段EB上運動時,是否存在點Q,使△BDQ為直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中有一點.

(1)點My軸的距離為1時,M的坐標(biāo)?

(2)點MN//x軸時,M的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠D=∠C=90°,EDC的中點,AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c(b,c 為常數(shù))與x軸交于點A(﹣1,0),點 B(3,0),與y軸交于點C,其頂點為D,點P(不與點 A,B 重合)為拋物線上的一個動點.
(1)求拋物線的解析式;
(2)直線PA,PB分別于拋物線的對稱軸交于M,N 兩點,設(shè)M,N 兩點的縱坐標(biāo)分別為y1 , y2 , 求y1+y2的值;
(3)連接BC,BD,當(dāng)∠PAB=∠CBD時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為平行四邊形ABCD邊AD上一點,E,F(xiàn)分別為PB,PC的中點,△PEF,△PDC,△PAB的面積分別為S、S1、S2 , 若S=2,則S1+S2=( )

A.4
B.6
C.8
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上、向右、向下、向右的方向依次不斷地移動,每次移動一個單位,得到點A10,1),A21,1),A31,0),A42,0),……,那么點A2019的坐標(biāo)為(

A.1008,1B.1009,1C.1009,0D.1010,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市經(jīng)濟技術(shù)開發(fā)區(qū)某智能手機有限公司接到生產(chǎn)300萬部智能手機的訂單,為了盡快交貨,增開了一條生產(chǎn)線,實際每月生產(chǎn)能力比原計劃提高了50%,結(jié)果比原計劃提前5個月完成交貨,求每月實際生產(chǎn)智能手機多少萬部.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:用3A型車和2B型車載滿貨物一次可運貨共19噸;用2A型車和3B型車載滿貨物一次可運貨共21噸.

(1)1A型車和1B型車都載滿貨物一次分別可以運貨多少噸?

(2)某物流公司現(xiàn)有49噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都載滿貨物.

的值;

A型車每輛需租金130/,B型車每輛需租金200/請求出租車費用最少是多少元?

查看答案和解析>>

同步練習(xí)冊答案