【題目】小宜跟幾位同學(xué)在某快餐廳吃飯,如圖為此快餐廳的菜單.若他們所點(diǎn)的餐食總共為10份蓋飯,x杯飲料,y份涼拌菜.

1)他們點(diǎn)了   A套餐,   B套餐,   C套餐(均用含xy的代數(shù)式表示);

2)若x6,且A、B、C套餐均至少點(diǎn)了1份,則最多有   種點(diǎn)餐方案.

【答案】1)(10y),(10x),(x+y10);(25

【解析】

(1)由三種套餐包含的東西,可用含xy的代數(shù)式表示出他們點(diǎn)了三種套餐的份數(shù);

(2)由x6A、B、C套餐均至少點(diǎn)了1份,即可得出關(guān)于y的一元一次不等式組,解之即可得出y的取值范圍,再結(jié)合y為整數(shù)即可得出結(jié)論.

解:(1)BC套餐都包含一份蓋飯和一份涼拌菜,

∴他們點(diǎn)了(10y)份A套餐;

A,C套餐都包含一份蓋飯和一杯飲料,

∴他們點(diǎn)了(10x)份B套餐;

∴他們點(diǎn)了10﹣(10y)﹣(10x)=(x+y10)份C套餐.

故答案為:(10y);(10x);(x+y10).

2)依題意,得:,

解得:5≤y≤9

又∵y為整數(shù),

y5,6,7,89,

∴最多有5種點(diǎn)餐方案.

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點(diǎn)A,與拋物線的對(duì)稱軸交于點(diǎn)B,將點(diǎn)A向右平移5個(gè)單位得到點(diǎn)C,連接AB,AC得到的折線段記為圖形G

1)求出拋物線的對(duì)稱軸和點(diǎn)C坐標(biāo);

2)①當(dāng)時(shí),直接寫出拋物線與圖形G的公共點(diǎn)個(gè)數(shù).

②如果拋物線與圖形G有且只有一個(gè)公共點(diǎn),求出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D在⊙O上,弦AD的延長(zhǎng)線與弦BC的延長(zhǎng)線相交于點(diǎn)E.用①AB是⊙O的直徑,②CBCE,③ABAE中的兩個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論組成一個(gè)命題,則組成真命題的個(gè)數(shù)為(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小志從甲、乙兩超市分別購買了10瓶和6cc飲料,共花費(fèi)51元;小云從甲、乙兩超市分別購買了8瓶和12cc飲料,且小云在乙超市比在甲超市多花18元,在小志和小云購買cc飲料時(shí),甲、乙兩超市cc飲料價(jià)格不一樣,若只考慮價(jià)格因素,到哪家超市購買這種cc飲料便宜?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ADBC,AB10,CD4,DMAB于點(diǎn)M.連接BD并延長(zhǎng)到E,使DEBD,作EFAB,交BA的延長(zhǎng)線于點(diǎn)F

1)求MB的長(zhǎng);

2)求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)yax2+bx+c的圖象經(jīng)過點(diǎn)A0,﹣4)和B(﹣22).

1)求c的值,并用含a的式子表示b;

2)當(dāng)﹣2x0時(shí),若二次函數(shù)滿足yx的增大而減小,求a的取值范圍;

3)直線AB上有一點(diǎn)Cm,5),將點(diǎn)C向右平移4個(gè)單位長(zhǎng)度,得到點(diǎn)D,若拋物線與線段CD只有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線x=3與直線y=x+1交于點(diǎn)A,函數(shù)y=k0,x0)的圖象與直線x=3,直線y=x+1分別交于點(diǎn)B,C

1)求點(diǎn)A的坐標(biāo).

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記函數(shù)y=k0,x0)的圖象在點(diǎn)B,C之間的部分與線段ABAC圍成的區(qū)域(不含邊界)為W

當(dāng)k=1時(shí),結(jié)合函數(shù)圖象,求區(qū)域W內(nèi)整點(diǎn)的個(gè)數(shù);

若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△OAB的邊OBx軸的正半軸上,AOAB,M是邊AB的中點(diǎn),經(jīng)過點(diǎn)M的反比例函數(shù)yk0x0)的圖象與邊OA交于點(diǎn)C,則的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,對(duì)角線ACBD相交于點(diǎn)O,E是邊AB上的一個(gè)動(dòng)點(diǎn)(不與AB重合),連接EO并延長(zhǎng),交CD于點(diǎn)F,連接AF,CE,下列四個(gè)結(jié)論中:

①對(duì)于動(dòng)點(diǎn)E,四邊形AECF始終是平行四邊形;

②若∠ABC90°,則至少存在一個(gè)點(diǎn)E,使得四邊形AECF是矩形;

③若ABAD,則至少存在一個(gè)點(diǎn)E,使得四邊形AECF是菱形;

④若∠BAC45°,則至少存在一個(gè)點(diǎn)E,使得四邊形AECF是正方形.

以上所有正確說法的序號(hào)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案