【題目】在一次數(shù)學(xué)活動(dòng)中,黑板上畫著如圖所示的圖形,活動(dòng)前老師在準(zhǔn)備的四張卡片(大小、顏色、形狀相同)的正面上分別寫有如下四個(gè)等式中的一個(gè)等式:①;②;③;④;小英同學(xué)閉上眼睛從四張卡片中隨機(jī)抽出一張,再?gòu)氖O碌目ㄆ须S機(jī)抽出另一張,請(qǐng)結(jié)合圖形回答下列問題:

1)當(dāng)抽得②和④時(shí),用②和④作條件能否判定四邊形是平行四邊形,請(qǐng)說明理由;

2)請(qǐng)你用樹狀圖或表格表示抽取兩張卡片上的條件的所有可能出現(xiàn)的結(jié)果(用序號(hào)表示)并求以已經(jīng)抽取的兩張卡片上的條件為已知,使四邊形不能構(gòu)成平行四邊形的概率.

【答案】(1)見解析;(2).

【解析】

1)由AD//BC可得∠A與∠B互補(bǔ),再根據(jù)∠A=C,可得到∠B與∠C互補(bǔ),繼而可得AB//CD,進(jìn)而根據(jù)平行四邊形的定義證明即可;

2)畫樹狀圖得到所有可能的情況,然后找出符合題意的條件數(shù),利用概率公式求解即可.

1)用②和④作條件,能判定四邊形是平行四邊形,

理由:∵

,

,

∴四邊形是平行四邊形;

3)抽取兩張卡片上的等式的所有可能出現(xiàn)的結(jié)果為:

其中,含①③,②③,②④,③④的組合都能構(gòu)成平行四邊形,

∴使四邊形不能構(gòu)成平行四邊形的概率=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABO中,∠BAO90°,AOAB,BO8,點(diǎn)A的坐標(biāo)(﹣80),點(diǎn)C在線段AO上以每秒2個(gè)單位長(zhǎng)度的速度由AO運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接BC,過點(diǎn)AADBC,垂足為點(diǎn)E,分別交BO于點(diǎn)F,交y軸于點(diǎn) D

1)用t表示點(diǎn)D的坐標(biāo)   ;

2)如圖1,連接CF,當(dāng)t2時(shí),求證:∠FCO=∠BCA;

3)如圖2,當(dāng)BC平分∠ABO時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:PA=PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).

(1)如圖,當(dāng)∠APB=45°時(shí),求ABPD的長(zhǎng);

(2)當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點(diǎn)E,BED的角平分線EFDC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像交軸于,交軸于,過畫直線。

1)求二次函數(shù)的解析式;

2)點(diǎn)軸正半軸上,且,求的長(zhǎng);

3)點(diǎn)在二次函數(shù)圖像上,以為圓心的圓與直線相切,切點(diǎn)為。

點(diǎn)軸右側(cè),且(點(diǎn)與點(diǎn)對(duì)應(yīng)),求點(diǎn)的坐標(biāo);

的半徑為,求點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,等腰直角三角形的腰上,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在上,則的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,的斜邊BCx軸上,直角頂點(diǎn)Ay軸的正半軸上,,.

(1)求過A、B、C三點(diǎn)的拋物線的解析式和對(duì)稱軸;

(2)設(shè)點(diǎn)是拋物線在第一象限部分上的點(diǎn),的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo);

(3)在拋物線對(duì)稱軸上,是否存在這樣的點(diǎn)M,使得為等腰三角形(P為上述(2)問中使S最大時(shí)的點(diǎn))?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;

(4)設(shè)點(diǎn)M是直線AC上的動(dòng)點(diǎn),試問:在平面直角坐標(biāo)系中,是否存在位于直線AC下方的點(diǎn)N,使得以點(diǎn)O、A、M、N為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為等邊三角形ABC內(nèi)的一點(diǎn), DA=5,DB=4,DC=3,將線段AD以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段AD',下列結(jié)論:①點(diǎn)D與點(diǎn)D'的距離為5;②∠ADC=150°;③△ACD'可以由△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到;④點(diǎn)DCD'的距離為3;S四邊形ABCD′=6+ ,其中正確的有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M﹣2,m).

1)求反比例函數(shù)的解析式;(2)求點(diǎn)B到直線OM的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案