【題目】如圖,在單位為1的網(wǎng)格中,有ABC,且的三個頂點都在格點上:

1)以點C為原點建立直角坐標系,并確定A點的坐標;

2)將ABC向下平移5個單位,得到A1B1C1(不寫作法);

3)以點C為旋轉(zhuǎn)中心,將ABC順時針旋轉(zhuǎn)90°得到A2B2C2(不寫作法);

4)求弧BB2的長.

【答案】1)圖見解析,A點的坐標為(34);(2)圖見解析;(3)圖見解析;(4.

【解析】

1)根據(jù)題意作出直角坐標系,然后寫出A點的坐標;

2)作出點A、B、C向下平移5個單位長度的對應(yīng)點,首尾順次連接即可得;

3)作出點A、B繞點C順時針旋轉(zhuǎn)90°所得對應(yīng)點,首尾順次連接即可得;

4)根據(jù)弧長公式列式計算可得.

解:(1)如圖:A點的坐標為(34);

2A1B1C1為所求,

3A2B2C2為所求,

4)由圖可知BC=,∠BCB1=90°.

∴弧BB2的長==,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】中考前,某校文具店以每套5元購進若干套考試用具,為讓利考生,該店決定售價不超過7元,在幾天的銷售中發(fā)現(xiàn)每天的銷售數(shù)量y(套)和售價x(元)之間存在一次函數(shù)關(guān)系,繪制圖象如圖.

1yx的函數(shù)關(guān)系式為  (并寫出x的取值范圍);

2)若該文具店每天要獲得利潤80元,則該套文具的售價為多少元?

3)設(shè)銷售該套文具每天獲利w元,則銷售單價應(yīng)為多少元時,才能使文具店每天的獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(6分)在一個不透明的紙箱里裝有紅、黃、藍三種顏色的小球,它們除顏色外完全相同,其中紅球有2個,黃球有1個,藍球有1個.現(xiàn)有一張電影票,小明和小亮決定通過摸球游戲定輸贏(贏的一方得電影票).游戲規(guī)則是:兩人各摸1次球,先由小明從紙箱里隨機摸出1個球,記錄顏色后放回,將小球搖勻,再由小亮隨機摸出1個球并記錄顏色.若兩人摸到的球顏色相同,則小明贏,否則小亮贏.這個游戲規(guī)則對雙方公平嗎?請你利用樹狀圖或列表法說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點坐標為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個根x1x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣4.其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖1所示,直線y=x+cx軸交于點A(-4,0),與y軸交于點C,拋物線y=-x2+bx+c經(jīng)過點A,C.

(1)求拋物線的解析式

(2)E在拋物線的對稱軸上,求CE+OE的最小值;

(3)如圖2所示,M是線段OA的上一個動點,過點M垂直于x軸的直線與直線AC和拋物線分別交于點P、N.

①若以C,P,N為頂點的三角形與△APM相似,則△CPN的面積為  ;

②若點P恰好是線段MN的中點,點F是直線AC上一個動點,在坐標平面內(nèi)是否存在點D,使以點D,F(xiàn),P,M為頂點的四邊形是菱形?若存在,請直接寫出點D的坐標;若不存在,請說明理由.

注:二次函數(shù)y=ax2+bx+c(a0)的頂點坐標為()

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON30°,BOM上一點,BAON于點A,四邊形ABCD為正方形,P為射線BM上一動點,連結(jié)CP,將CP繞點C順時針方向旋轉(zhuǎn)90°得CE,連接BE,若AB2,則BE的最小值為( )

A. +1B. 21C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮兩同學做游戲,游戲規(guī)則是:有一個不透明的盒子,里面裝有兩張紅卡片,兩張綠卡片,卡片除顏色外其它均相同,兩人先后從盒子中取出一張卡片(不放回),若兩人所取卡片的顏色相同,則小明獲勝,否則小亮獲勝.

1)請用畫樹狀圖或列表法列出游戲所有可能的結(jié)果;

2)請根據(jù)你的計算結(jié)果說明游戲是否公平,若不公平,你認為對誰有利?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ADABC的高,且BDCD

(1)如圖1,求證:∠BADCAD;

(2)如圖2,點EAD上,連接BE,將ABE沿BE折疊得到ABE,ABAC相交于點F,若BEBC,求∠BFC的大小;

(3)如圖3,在(2)的條件下,連接EF,過點CCGEF,交EF的延長線于點G,若BF=10,EG=6,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是用8個大小相同的小正方體搭成的幾何體,僅在該幾何體中取走一塊小正方體,使得到的新幾何體同時滿足兩個要求:(1)從正面看到的形狀和原幾何體從正面看到的形狀相同;(2)從左面看到的形狀和原幾何體從左面看到的形狀也相同.在不改變其它小正方體位置的前提下,可取走的小正方體的標號是_____

查看答案和解析>>

同步練習冊答案