【題目】如圖,已知⊙O為△ABC的外接圓,AC為直徑,且AC2

1)用尺規(guī)作圖作出∠ABE45°,與弧AC交于E點(保留作圖痕跡,不寫作法);

2)若∠A30°,求BE的長.

【答案】1)見解析;(2BE1+

【解析】

1)首先根據(jù)直徑所對的圓周角為90°可知∠ABC=90°,由此可知要使∠ABE45°,只要畫出∠ABC的角平分線即可,據(jù)此按照角平分線的作圖方法畫圖即可;

2)過點CCFBE,垂足為F,連接CE,首先根據(jù)AC為直徑得出∠ABC=90°,然后利用“30°角所對的直角邊為斜邊一半”得出BC的長,然后在RtBFC中利用三角函數(shù)求出CF,由此進一步得出BF,最后在RtEFC中再次根據(jù)三角函數(shù)求出EF,由此即可得出答案.

1)如圖,∠ABE即為所求;

2)過點CCFBE,垂足為F,連接CE,

∵∠A=30°

∴∠BEC=30°,

AC為直徑,

∴∠ABC=90°,

由(1)可知∠ABE=45°

∴∠EBC=45°,

RtABC中,∵∠A=30°,AC=,

BC=,

RtBFC中,sinFBC=

CF=1,

∵∠EBC=45°CFBE,

∴∠BCF=45°

BF=CF=1,

RtEFC中,tanBEC=,

EF=,

BE=BF+EF=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖分別是某款籃球架的實物圖與示意圖,已知于點,底座的長為米,底座與支架所成的角,點在支架上,籃板底部支架于點,已知米,米,米.

1)求籃板底部支架支架所成的角的度數(shù).

2)求籃板底部點到地面的距離.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,直線DEO相切于點C,過AB分別作ADDE,BEDE,垂足為點D,E,連接ACBC,若ADCE3,則的長為( 。

A.B.πC.πD.π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B90°,ADBC,ADACAB6,BC8.點P以每秒5個單位長度由點A沿線段AC運動;同時,線段EF以相同的速度由CD出發(fā)沿DA方向平移,與AC交于點Q,連結PE,PF.當點F與點B重合時,停止所有運動,設P運動時間為t秒.

1)求證:△APE≌△CFP

2)當t1時,若△PEF為直角三角形,求t的值.

3)作△PEF的外接圓O

O只經(jīng)過線段AC的一個端點時,求t的值.

作點P關于EF的對稱點P′,當P′落在CD上時,請直接寫出線段CP′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連接AG、CF.則下列結論:①△ABG≌△AFG;②BG=CG;③AGCF;④SEGC=SAFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2mx+m+2的圖象與x軸交于A(﹣1,0),B兩點,在x軸上方且平行于x軸的直線EF與拋物線交于E,F兩點,EF的左側(cè),過E,F分別作x軸的垂線,垂足是M,N

1)求m的值及拋物線的頂點坐標;

2)設BNt,矩形EMNF的周長為C,求Ct的函數(shù)表達式;

3)當矩形EMNF的周長為10時,將△ENM沿EN翻折,點M落在坐標平面內(nèi)的點記為M',試判斷點M'是否在拋物線上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD

2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;

3)連接OMMN

根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圓O中,弦ABCD相交于點E,且弧AC與弧BD相等.點D在劣弧AB上,聯(lián)結CO并延長交線段AB于點F,聯(lián)結OA、OB.當OA,且tanOAB

1)求弦CD的長;

2)如果AOF是直角三角形,求線段EF的長;

3)如果SCEF4SBOF,求線段AF的長.

查看答案和解析>>

同步練習冊答案