【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
【答案】C
【解析】試題分析:解:①正確.
理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,
∴Rt△ABG≌Rt△AFG(HL);
②正確.
理由:
EF=DE=CD=2,設(shè)BG=FG=x,則CG=6﹣x.
在直角△ECG中,根據(jù)勾股定理,得(6﹣x)2+42=(x+2)2,
解得x=3.
∴BG=3=6﹣3=GC;
③正確.
理由:
∵CG=BG,BG=GF,
∴CG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG;
∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
④正確.
理由:
∵S△GCE=GCCE=×3×4=6,
∵S△AFE=AFEF=×6×2=6,
∴S△EGC=S△AFE;
⑤錯誤.
∵∠BAG=∠FAG,∠DAE=∠FAE,
又∵∠BAD=90°,
∴∠GAF=45°,
∴∠AGB+∠AED=180°﹣∠GAF=135°.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀題:課本上有這樣一道例題:“解方程:
解:去分母得:
6(x+15)=15-10(x-7)①
6x+90=15-10x+70②
16x=-5③
x=- ④
請回答下列問題:
(1)得到①式的依據(jù)是________;
(2)得到②式的依據(jù)是________;
(3)得到③式的依據(jù)是________;
(4)得到④式的依據(jù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE=CE,連接AE并延長交BC的延長線于點(diǎn)F.
(1)求證:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時將點(diǎn)A,B分別向下平移2個單位,再向左平移1個單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說明理由;
(3)點(diǎn)P是直線BD上的一個動點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動時(不與B,D重合),直接寫出∠BAP、∠DOP、∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的面積為9,點(diǎn)O為左邊原點(diǎn),點(diǎn)A在軸上,點(diǎn)C在軸上,點(diǎn)B在函數(shù)的圖象上,點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作軸、軸的垂線,垂足分別為E、F,并設(shè)矩形OEPF和正方形OABC不重合的部分(圖中陰影部分)的面積為S.
(1)求B點(diǎn)坐標(biāo)和值;
(2)當(dāng)時,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為 .其中,正確的結(jié)論是( )
A.①②④
B.①③⑤
C.②③④
D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,A F∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料226 kg,乙種原料250 kg,計劃利用這兩種原料生產(chǎn)A、B兩種的產(chǎn)品共40件,生產(chǎn)A、B兩種產(chǎn)品用料情況如下表:
若設(shè)生產(chǎn)A產(chǎn)品件,求的值,并說明有哪幾種符合題意的生產(chǎn)方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是某俱樂部籃球隊隊員年齡結(jié)構(gòu)直方圖,根據(jù)圖中信息解答下列
問題:
(1)該隊隊員年齡的平均數(shù);
(2)該隊隊員年齡的眾數(shù)和中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com